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Abstract. Infinite matroids have been defined by Reinhard Diestel and
coauthors in such a way that this class is (together with the finite ma-
troids) closed under dualization and taking minors. On the other hand,
Andreas Dress introduced a theory of matroids with coefficients in a
fuzzy ring which is – from a combinatorial point of view – less gen-
eral, because within this theory every circuit has a finite intersection
with every cocircuit. Within the present paper, we extend the theory
of matroids with coefficients to more general classes of matroids, if the
underlying fuzzy ring has certain properties to be specified.
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1. Introduction

For long time, matroids M have only been examined when their groundset E
is finite, or, more generally, the rank of M is finite, or, still more generally, M
is finitary; that means, all circuits of M are finite. Concerning the classical
theory of matroids, see for instance [11].

In 1966, R. Rado posed the question whether a theory about infinite matroids
may be developed that satisfies at least the following two conditions:
These infinite matroids should contain the finitary matroids. Moreover, the
class of infinite matroids (together with the finite matroids) should be closed
under taking minors and duals. The last requirement fails in the class of
finitary matroids.
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A complete answer to Rado’s question has been given in [4]. The authors
did not only define infinite matroids satisfying the required conditions; they
also find infinite versions for all the usual systems of axioms for matroids –
in terms of independent sets, bases, the closure operator, circuits, and the
rank function. Moreover, they prove that all of these systems of axioms are
cryptomorphic.

The question arises whether a similar theory may be developed for oriented
matroids and related structures – such as, say, valuated matroids.

One cannot expect to get a theory with as many cryptomorphisms as for
infinite matroids without any further structure. Particularly, the rank func-
tion does not control orientations – and infinite bases cannot be oriented in
a similar matter as finite ones.

The question of how to define infinite oriented matroids – in terms of orienta-
tions of circuits and halfspaces induced by hyperplanes – will in the present
paper be imbedded into a somewhat more general one:

A.W.M. Dress developed a theory of finite and infinite matroids with coeffi-
cients in a fuzzy ring in [6], which also satisfies the conditions posed by R.
Rado, but is, at least from a combinatorial point of view, less general than
the theory of infinite matroids as developed in [4]. More precisely, within
this theory of matroids with coefficients, the intersection of a circuit and a
cocircuit is – by the very definition – always finite, while there exist infinite
matroids as defined in [4] that do not satisfy this property; such matroids are
called wild matroids. A matroid is called a tame matroid if it is not a wild
one. Concerning the existence of wild matroids, see [3].

Within [6] – as well as in several subsequent papers, see particularly [8] – all
computations are tailored to tame matroids.

The present paper is dedicated to the problem whether some of these com-
putations can be carried over to at least several classes of wild matroids. To
this end, infinite sums in fuzzy rings have to be considered – without having
any problems with convergence.
This is indeed unproblematic if the underlying fuzzy ring has the following
property:

Every infinite sum of units is well determined by finitely many summands.

Such a fuzzy ring will be called a finitary one.

Particularly, the fuzzy ring R//R+ corresponding to oriented matroids is
finitary! This fact yields now a more or less canonical way to define infinite
oriented matroids – as a special class of infinite matroids with coefficients in
a finitary fuzzy ring.
Finite oriented matroids are introduced in [2] in terms of signed circuits; see
also the papers [10] and [5], which are based on orientations of bases.

Valuated Matroids – of finite rank – are introduced in [9]. These can now
also be defined even if the underlying matroid is wild, though the fuzzy ring
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corresponding to valuated matroids is not a finitary one. – It suffices that
the above requirement concerning infinite sums of units does not necessarily
hold generally but at least in special cases.

Technically, the paper is organized as follows:

In Section 2, we recall the concept of an infinite matroid as established in [4]
and the definition of a fuzzy ring.

In Section 3, we introduce the concept of a (partial) finitary fuzzy ring and
state several examples.

In Section 4, we present the general definition of a dual pair of matroids with
coefficients in a fuzzy ring of arbitrary rank in terms of pairwise orthogonal
circuit- and cocircuit functions – which works in any case if this fuzzy ring is
a finitary one. Moreover, we show that minors can be constructed arbitrarily,
while dualization works – almost by definition – automatically.
Particularly, if K is a field, it turns out – together with the results from [1] –
that the dual pairs of matroids with coefficients in K are precisely the dual
pairs of tame thin sums matroids over K. More precisely, for a field K, these
thin sums matroids are defined in terms of functions which allow infinite
linear combinations over K that are pointwise finite and, hence, well defined,
while, in case of finitary fuzzy rings, any sum of units is automatically well
defined.

In Section 5, we interpret cocircuit functions as hyperplane functions and
derive several consequences concerning particular orthogonality relations.
This will particularly be examined in case of oriented matroids, weakly ori-
ented matroids, and valuated matroids.

2. Preliminaries

In this section, we recall the concept of an infinite matroid as presented in
[4], its dual, and the definition of a fuzzy ring, which up to now has served
as a coefficient domain – particularly for matroids of finite rank.

If M is an arbitrary set and M is a set of subsets of M , then, Mmax will
denote those sets in M which are maximal with respect to inclusion. Note
that Mmax may be empty even if M is not empty.

Definition 2.1. Suppose that E is an arbitrary set and that T is a set of
subsets of E. Then the pair M := (E,T) is a matroid defined on E with T as
its independent sets if the following axioms hold:

(I1) ∅ ∈ T.

(I2) If I ∈ T and J ⊆ I, then one has J ∈ T; that means, T is closed under
taking subsets.
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(I3) If I ∈ T \ Tmax and I ′ ∈ Tmax, then there exists some x ∈ I ′ \ I such
that I ∪ {x} ∈ T.

(I4) If I ∈ T and I ⊆ X ⊆ E, then the set system {I ′ ∈ T | I ⊆ I ′ ⊆ X} has
a maximal element.

Remark 2.2. Suppose that M = (E,T) is a matroid in the above sense. Then
Axiom (I4) implies particularly:

B := Tmax 6= ∅.

B is called the set of bases of M .
A matroid may also be defined in terms of its bases; see Theorem 4.1 in [4].
A set is independent if and only if it is contained in a base.

Remark 2.3. Suppose that M is a matroid defined on the set E with B as its
set of bases, and put

B∗ := {E \B |B ∈ B}.

By Theorem 3.1 in [4], B∗ is again the set of bases of a matroid M∗, called
the dual of M .
Trivially, one has M∗∗ := (M∗)∗ = M.

Next, we repeat the concepts of circuits, cocircuits, and hyperplanes of a
matroid; see also [4].

Definition 2.4. Assume that M = (E,T) is a matroid.

i) A subset C of E is called a circuit in M , if C is a minimal dependent
set; that means: C /∈ T but J ∈ T for every proper subset J of C.

ii) A subset D of E is a cocircuit in M , if D is a circuit in the dual matroid
M∗.

iii) A subset H of E is a hyperplane in M , if H is a maximal set that does
not contain a base. Equivalently, this means that E \H is a cocircuit in
M .

At the end of this section, we repeat the concept of a fuzzy ring as defined
in [6] as well as particular examples also stated in [6].

Definition 2.5. A fuzzy ring K = (K; +; ·; ε;K0) consists of a set K, together
with two binary operations +, · : K×K → K, a specified element ε ∈ K and
a specified subset K0 ⊆ K such that the following axioms hold:

(FR0) (K,+) and (K, ·) are abelian semigroups with neutral elements 0 and
1, respectively;
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(FR1) 0 · κ = 0 for all κ ∈ K;

(FR2) α · (κ1 + κ2) = α · κ1 + α · κ2 for all κ1, κ2 ∈ K and all
α ∈ K∗ := {β ∈ K | 1 ∈ β ·K}, the group of units in K;

(FR3) ε2 = 1;

(FR4) K0 +K0 ⊆ K0, K ·K0 ⊆ K0, 0 ∈ K0, 1 /∈ K0;

(FR5) For α ∈ K∗ one has 1 + α ∈ K0 if and only if α = ε;

(FR6) κ1, κ2, λ1, λ2 ∈ K and κ1 + λ1, κ2 + λ2 ∈ K0 implies
κ1 · κ2 + ε · λ1 · λ2 ∈ K0;

(FR7) κ, λ, κ1, κ2 ∈ K and κ+ λ · (κ1 + κ2) ∈ K0 implies
κ+ λ · κ1 + λ · κ2 ∈ K0.

Remark 2.6. Suppose that K = (K; +; ·; ε;K0) is a fuzzy ring.

i) (FR4), (FR5), and (FR7) imply κ+ ε · κ ∈ K0 for all κ ∈ K.

ii) (FR2) and (FR5) yield:

(FR5′) For α, β ∈ K∗ one has α+ ε · β ∈ K0 if and only if α = β.

Remark 2.7. The commutative unitary rings R = (R; +; ·) are (in a canonical
correspondence to) exactly those fuzzy rings K = (K; +; ·; ε;K0) for which
K0 = {0}. In this case, we have necessarily ε = −1.

Examples 2.8. Suppose that K = (K; +; ·; ε;K0) is a fuzzy ring and that
U ≤ K∗ is a subgroup of the group of units in K. Then the quotient fuzzy
ring K/U is defined by

K/U := (P(K)U ; +; ·; ε · U ;P(K)U0 ),

where

P(K)U := {F ⊆ K |F 6= ∅, U · F = F}

denotes the nonempty U−invariant subsets of K and

P(K)U0 := {F ∈ P(K)U |F ∩K0 6= ∅}.

Sets in P(K)U are added and multiplied as complexes.

K//U will denote the smallest fuzzy ring contained in K/U that contains
(K/U)∗ ∪ {{0}}.

If, particularly, K = R and U = R+ equals the set of all real numbers or all
positive real numbers, respectively, then we get with L := R//R+ :

L∗ = {R+,R−}, L0 = {{0},R}, L = L∗ ∪̇L0.

Moreover, we have the following addition and multiplication tables:
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+ {0} R+ R− R
{0} {0} R+ R− R
R+ R+ R+ R R
R− R− R R− R
R R R R R

· {0} R+ R− R
{0} {0} {0} {0} {0}
R+ {0} R+ R− R
R− {0} R− R+ R
R {0} R R R

3. Finitary Families of Units and Finitary Fuzzy Rings

In this section, we want to consider sums of infinitely many units in a fuzzy
ring K which may be well defined in a canonical manner. More precisely,
we consider families (xi)i∈I of elements in K∗ ∪ {0}; in what follows, such
elements xi have to be added.

Definition 3.1. Suppose that K = (K; +; ·; ε;K0) is a fuzzy ring.

i) Suppose that (xi)i∈I is a family of elements in K∗ ∪ {0}. This family is
called finitary, if the following finitary condition holds:

There exists a finite subset I0 ⊆ I such that for all j ∈ I \ I0 one
has: ∑

i∈I0 xi + xj =
∑

i∈I0 xi.

In other words, after having added all elements xi for i ∈ I0,
the sum does not change anymore by adding (finitely many) further
elements xj for j ∈ I \ I0.
In this case, we define the sum of the elements xi, i ∈ I, as follows:∑

i∈I xi :=
∑

i∈I0 xi.

ii) The fuzzy ring K is called a finitary fuzzy ring, if every family of units
in K – and, hence, also every family of elements in K∗∪{0} – is finitary.

iii) The fuzzy ring K is called a partial finitary fuzzy ring, if there exists at
least one infinite family (xi)i∈I of units in K that is finitary. Note that
this means that I is infinite, while K∗ might be finite.

Remark 3.2. Suppose that K = (K; +; ·; ε;K0) is a fuzzy ring.

i) Certainly, every finite family of units in K is finitary: Just put I0 := I
in the above definition.

ii) If (xi)i∈I is a finitary family of elements in K∗ ∪ {0}, then their sum is
well defined; that means, it does not depend on the finite subset I0 of I
as specified:

Namely, suppose that I1, I2 are finite subsets of I such that for
both elements k ∈ {1, 2} and all j ∈ I \ Ik one has∑

i∈Ik xi + xj =
∑

i∈Ik xi.
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By applying this equation for k = 1, induction on |I2 \ I1| yields:∑
i∈I1∪I2 xi =

∑
i∈I1 xi.

By symmetry, the same equation holds by exchanging the roles of
I1 and I2, which proves our claim.

Examples 3.3. i) There does not exist any unitary ring R that is partial
finitary: Namely, for every r ∈ R and every u ∈ R∗ one has r + u 6= r.

ii) The fuzzy ring R/R∗ is a finitary fuzzy ring: Every – finite – sum of at
least 2 units equals R.

iii) Also, the fuzzy ring R//R+ corresponding to oriented matroids is a
finitary one: If (xi)i∈I is a finite family of units all of which coincide,
then there sum also takes this common value. If, otherwise, both of the
units in R//R+ are involved, then the sum all of these units equals R.

Example 3.4. If Γ = (Γ, ·,≤) is a linearly ordered abelian group, then the
fuzzy ring KΓ that corresponds to valuated matroids with values in Γ is de-
termined by:

KΓ = {0} ∪̇Γ ∪̇Γ, K∗Γ = Γ, (KΓ)0 = {0} ∪̇Γ,

where Γ is a disjoint copy of Γ, and 0 is a specified element neither contained
in Γ nor in Γ.
Furthermore, we get the following addition and multiplication table, where
α, β ∈ Γ are arbitrary but α < β in case of addition:

+ 0 α β α β

0 0 α β α β

α α α β α β

β β β β β β

α α α β α β

β β β β β β

· 0 β β
0 0 0 0

α 0 α · β α · β
α 0 α · β α · β

This fuzzy ring KΓ is a partial finitary one but not finitary:

A family of units (γi)i∈I in KΓ
∗ = Γ is a finitary one if and only if this family

takes a maximum value γi0 . In this case, we have:∑
i∈I γi = γi0 ∈ Γ = KΓ

∗,

if the maximum value is attained exactly once. If, otherwise, the maximum
value is attained at least twice, then we get∑

i∈I γi = γi0 ∈ (KΓ)0.

Before stating another class for finitary fuzzy rings, we fix the following
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Convention 3.5. Suppose that F is a field and that U is a subgroup of F∗.
For x ∈ F∗ and n ∈ N, define n(x · U) recursively as follows:

1(x · U) := x · U, (n+ 1)(x · U) := n(x · U) + x · U.

Proposition 3.6. Suppose that F is a finite field and that U is a subgroup of F∗
with at least 2 elements. Then the quotient structure K := F/U is a finitary
fuzzy ring. More precisely, we get for q := |F|:

i) One has

0 ∈ q(U), 0 ∈ (q − 1)(U),
and, hence, also

0 ∈ n(U) for all n ≥ (q − 1) · (q − 2).

ii) For every infinite family (xi)i∈I of units in F∗, there exists a finite
subfamily (xi)i∈I0 such that for all j ∈ I \ I0 one has:∑

i∈I0 xi · U + xj · U =
∑

i∈I0 xi · U .

Proof. i) Clearly, we have 0 ∈ q(U), because q is a power of char(F).

Furthermore, by assumption, there exists some a ∈ U \ {1}. Then
we have aq−1 = 1, and, hence

0 = (a− 1)−1 · (aq−1 − 1) =
∑q−2

j=0 a
j ∈ (q − 1)(U).

The last assertion in i) follows now from the following fact:

(q − 1) · (q − 2)− 1 is the largest natural number g that does not
admit a presentation as follows:

g = a · (q − 1) + b · q for appropriate a, b ∈ N0.

ii) Since F and, hence, also F∗/U are finite, the subgroup U has only finitely
many cosets in F∗. Hence, it suffices to prove:

There exists some N ∈ N such that for all n ∈ N one has:

N(U) = (N + n)(U).

If this is proved, then we obtain also

N(x · U) = (N + n)(x · U) for all x ∈ F∗ and all n ∈ N.

Since F is finite, there exists some M ∈ N such that for all n ∈ N
one has |n(U)| ≤ |M(U)|.

Furthermore, i) yields for all n ∈ N with n ≥ (q − 1) · (q − 2):

M(U) ⊆M(U) + n(U) = (M + n)(U).

By our choice of M , this means:

M(U) = (M + n)(U) for all n ≥ (q − 1) · (q − 2).

Hence, the assertion follows for N := M + (q − 1) · (q − 2).

�
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Remark 3.7. Since the relation n(U) = m(U) implies (n+1)(U) = (m+1)(U),
too, we can even choose N = M at the end of the last proof.

Remark 3.8. In general, Proposition 3.6 does not hold for infinite fields:
Assume, for example, that R is a valuation ring (with quotient field F) whose
maximal ideal m satisfies the relation [R : m] = 2, and put U := R∗ = R \m.
Then for all odd n ∈ N one has n(U) = U , while all even n ∈ N satisfy
n(U) = m.

4. Dual Pairs of Matroids with Coefficients

Definition 4.1. Suppose that K is an arbitrary fuzzy ring and that M is a
matroid defined on an arbitrary set E with C as its set of circuits and C∗ as
its set of cocircuits.
A Dual Pair of matroids with coefficients in K – and underlying matroid M
– consists of a family (fC)C∈C of circuit functions fC : E → K∗ ∪ {0} and
a family (rD)D∈C∗ of cocircuit functions rD : E → K∗ ∪ {0} such that the
following properties hold:

(DPi) For all C ∈ C one has: f−1
C (K∗) = C;

for all D ∈ C∗ one has: r−1
D (K∗) = D.

(DPii) For all C ∈ C and all D ∈ C∗, the following holds:

The family (fC(e) · rD(e))e∈E – of elements in K∗ ∪ {0} – is a
finitary family, and one has:∑

e∈E fC(e) · rD(e) ∈ K0.

Moreover, for given units αC , βD ∈ K∗, we say that two families (fC)C∈C
and (rD)D∈C∗ as in (DPi) and (DPii) define the same Dual Pair of matroids
with coefficients in K as the families (αC · fC)C∈C and (βD · rD)D∈C∗ .

Remark 4.2. Definition 4.1 means that each circuit function and each cocir-
cuit function is defined only up to some unit – as this has also been achieved
in [6] and [8].
Moreover, it is trivial that this definition is selfdual in the following sense:
If M is the underlying matroid of a dual pair of matroids with coefficients,
then the same holds for M∗; just exchange the roles of circuit functions and
cocircuit functions. However, note that the underlying matroid of a dual pair
is uniquely determined if the roles of circuit functions on the one handside
and of cocircuit functions on the other handside are specified.
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Remark 4.3. The matroid M is called tame, if the intersection C ∩D is finite
for any circuit C and any cocircuit D in M ; otherwise, M is called a wild
matroid. Hence, under assumption of (DPi), the matroid M is tame if and
only if the family (fC(e) · rD(e))e∈E exhibits only finitely many nonvanishing
products – for any circuit C and any cocircuit D. Moreover, this implies that
the sum in (DPii) is automatically well defined. – Furthermore, if K is a
field, then Theorem 6.3 in [1] shows that the class of dual pairs of matroids
with coefficients in K is precisely the class of – dual pairs – of tame thin sums
matroids over K. Note that for a field K, axiom (DPii) can hold only if M
is a tame matroid.
If, on the other handside, the fuzzy ring K is finitary, then the sum in (DPii)
is always well defined – even for any wild matroid M .

Remark 4.4. Every matroid is the underlying matroid of a dual pair of ma-
troids with coefficients in the universal fuzzy ring K = R/R∗:
By Lemma 3.1 in [4], a circuit and a cocircuit never meet in a singleton set.
Hence, the sum in (DPii) either exhibits only products whose value is 0 or
at least 2 nonzero products. In the last case, the sum equals R – which lies
in K0.

Next, we want to claim that, together with M , also every minor of M is the
underlying matroid of a dual pair of matroids with coefficients.

First, we recall the following definition, see Chapter 3 in [4].

Definition 4.5. Suppose that M = (E,T) is a matroid – with T as its system
of independent sets and that X ⊆ E.

i) The restriction M |X of M to X is defined by

M |X := (X,T ∩ P(X)).

In other words, the independent subsets in M |X are the indepen-
dent sets in M which are contained in X.

ii) The contraction M.X of M to X is defined by

M.X := (M∗|X)∗.

iii) A minor of M is any matroid obtained from M by a finite sequence of
restrictions and contractions.

Now we can prove the following

Proposition 4.6. Assume that M = (E,T) is the underlying matroid of a dual
pair of matroids with coefficients in the fuzzy ring K. Then every minor of
M is also the underlying matroid of a dual pair of matroids with coefficients
in K.
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Proof. By Remark 4.2, it suffices to consider minors of the shape M |X for
X ⊆ E. By Chapter 3 in [4], the circuits in M ′ := M |X are those circuits C
in M that are contained in X, while the cocircuits are the minimal nonempty
sets of the shape D′ = D ∩X, where D runs through the cocircuits of M .

Next, we define circuit functions and cocircuit functions in M ′ by continuing
with the notations as in Definition 4.1.
For any circuit C in M ′, define the circuit function f ′C by f ′C(e) := fC(e)
for all e ∈ X. For any cocircuit D′ in M ′, proceed as follows: Choose a
cocircuit D in M with D′ = D ∩ X, and define the cocircuit function r′D′
by r′D′(e) := rD(e) for all e ∈ X. – Note that this function may depend not
only on D′ but also on the special choice of D; however, that is unimportant
within this proof.
In any case, we get for C,D′, D as just considered:∑

e∈X f ′C(e) · r′D′(e) =
∑

e∈E fC(e) · rD(e) ∈ K0,

because fC(e) = 0 holds for every e ∈ E \X. This proves what we want. �

In what follows, assume that K,M, (fC)C∈C , (rD)D∈C∗ are as in Definition
4.1.

Remark 4.7. The condition that all families (fC(e) · rD(e))e∈E for circuits
C ∈ C and cocircuits D ∈ C∗ are finitary is fulfilled automatically if at least
one of the following conditions i) or ii) holds:

i) The matroid M is a tame matroid; see Remark 4.3. Tame matroids
recover matroids with coefficients in a fuzzy ring as studied in [6].

ii) The fuzzy ring K is finitary.

Furthermore, we want to point out the following

Remark 4.8. In Theorem 6.4 in [3] it is proved: The class of tame thin sums
matroids over a given field is closed under duality and under taking minors.
Concerning the methods, analogous relations as in (DPii) are derived – where
now K0 = {0}.

5. Hyperplane Functions

We continue with the notations as in Definition 4.1.

Remark 5.1. In what follows, we usually do not study directly cocircuit func-
tions rD for D ∈ C∗ but the corresponding hyperplane functions sH := rE\H
for H ∈ H, where H denotes the set of hyperplanes in M . Then the last
requirement in (DPii) means:∑

e∈E fC(e) · sH(e) ∈ K0.
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As a very important special case of Remark 5.1, we point out the following

Lemma 5.2. Suppose that C is a circuit in M and that H is a hyperplane in
M such that |C \H| = 2, say C \H = {a, b}. Then we have:

i) fC(a) · sH(a) + fC(b) · sH(b) ∈ K0.

ii) fC(a) · sH(a) = ε · fC(b) · sH(b).

iii) fC(a) · fC(b)−1 = ε · sH(b) · sH(a)−1.

Proof. In view of (DPi), i) is now a special case of Remark 5.1.
ii) follows directly from i) and Remark 2.6 ii).
iii) follows trivially from ii). �

Definition 5.3. A subset L of E is called a hyperline in M , if there exists a
hyperplane H in M with L ⊆ H ⊆ E such that L is a hyperplane in the
restriction M |H.

Lemma 5.4. Suppose that L is a hyperline in M and that H1, H2, H3 are
pairwise distinct hyperplanes in M containing L. Furthermore, suppose that
ai ∈ Hi \ L for 1 ≤ i ≤ 3. Then one has:

i) There exists a circuit C in M such that

{a1, a2, a3} ⊆ C ⊆ L ∪ {a1, a2, a3}.
ii) One has:

sH1
(a2) · sH1

(a3)−1 · sH2
(a3) · sH2

(a1)−1 · sH3
(a1) · sH3

(a2)−1 = ε.

iii) If, moreover, a′1 ∈ H1 \ L, then one has:

sH3
(a1) · sH2

(a1)−1 = sH3
(a′1) · sH2

(a′1)−1.

Proof. i) Suppose that U is a base of the restriction M |L. Then any set
U ∪ {ai}, 1 ≤ i ≤ 3, is a base of M |Hi, and the sets U ∪ {a1, a2}, U ∪
{a1, a3}, U ∪ {a2, a3} are bases of M . This means that D := U ∪
{a1, a2, a3} is a dependent subset of M . By Lemma 3.8 in [4], this means
that D contains a circuit C that necessarily contains {a1, a2, a3}.

ii) We apply Lemma 5.2 ii) to the three pairs (C,Hi) for 1 ≤ i ≤ 3 and
obtain in view of C \Hi = {aj , ak} whenever {i, j, k} = {1, 2, 3}:

fC(a2) · sH1
(a2) = ε · fC(a3) · sH1

(a3),
fC(a3) · sH2

(a3) = ε · fC(a1) · sH2
(a1),

fC(a1) · sH3
(a1) = ε · fC(a2) · sH3

(a2).

By multiplying these three equations and shortening the three fac-
tors fC(ai), 1 ≤ i ≤ 3, we get:

sH1
(a2) · sH2

(a3) · sH3
(a1) = ε · sH1

(a3) · sH2
(a1) · sH3

(a2).

This implies ii) directly.
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iii) follows by applying ii) twice – once for a′1 instead of a1.

�

Proposition 5.5. Suppose that L,H1, H2, H3, a1, a2, a3 – and C are as in
Lemma 5.4. Then we get for all e ∈ E:

sH1
(a3)−1 · sH2

(a3) · sH1
(e) + ε · sH2

(e) + sH3
(a1)−1 · sH2

(a1) · sH3
(e) ∈ K0.

Proof. For e ∈ L, the assertion is clear in view of sHi
(e) = 0 for 1 ≤ i ≤ 3.

For e = a1, the assertion means:

ε · sH2
(a1) + sH2

(a1) ∈ K0;

this is trivial.

Similarly, the assertion follows for e = a3.

For e = a2, the assertion is:

sH1
(a3)−1 · sH2

(a3) · sH1
(a2) + sH3

(a1)−1 · sH2
(a1) · sH3

(a2) ∈ K0.

This holds by Lemma 5.4 ii) and Remark 2.6 ii).

In case e ∈ (H1 ∪H2 ∪H3) \ (L∪ {a1, a2, a3}), the assertion follows from the
facts just claimed and Lemma 5.4 iii).

Finally, assume that e =: a4 ∈ E \ (H1 ∪ H2 ∪ H3), and let H4 denote the
uniquely determined hyperplane in M containing L ∪ {a4}; more explicitly,
one has H4 = σ(L ∪ {a4}), where σ denotes the closure operator of M .

By applying Lemma 5.4 ii) to the three hyperplanesH1, H2, H4 orH1, H3, H4,
respectively, we get:

sH4(a2) · sH4(a1)−1 = ε · sH1(a2) · sH1(a4)−1 · sH2(a4) · sH2(a1)−1,

sH4
(a3) · sH4

(a1)−1 = ε · sH1
(a3) · sH1

(a4)−1 · sH3
(a4) · sH3

(a1)−1.

Furthermore, Remark 5.1 yields for the circuit C and the hyperplane H4:

fC(a1) · sH4(a1) + fC(a2) · sH4(a2) + fC(a3) · sH4(a3) ∈ K0.

Together with the relations

fC(a2) · fC(a1)−1 = ε · sH3
(a1) · sH3

(a2)−1,
fC(a3) · fC(a1)−1 = ε · sH2

(a1) · sH2
(a3)−1,

which hold by Lemma 5.2 iii), we get:

sH4(a1) + ε · sH3(a1) · sH3(a2)−1 · sH4(a2)
+ε · sH2(a1) · sH2(a3)−1 · sH4(a3) ∈ K0.

After multiplying with sH4(a1)−1, we get, together with the above formulas:
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1 + sH1(a2) · sH1(a4)−1 · sH2(a4) · sH2(a1)−1 · sH3(a1) · sH3(a2)−1

+sH1(a3) · sH1(a4)−1 · sH3(a4) · sH3(a1)−1 · sH2(a1) · sH2(a3)−1 ∈ K0.

Together with Lemma 5.4 ii), we get:

1 + ε · sH1(a3) · sH2(a3)−1 · sH2(a4) · sH1(a4)−1

+sH1(a3) · sH2(a3)−1 · sH2(a1) · sH3(a1)−1 · sH3(a4) · sH1(a4)−1 ∈ K0.

Multiplying with the product sH1(a4)·sH1(a3)−1 ·sH2(a3) yields the assertion
for e = a4.

�

Remark 5.6. In [7] and [8], we have examined the Tutte group of a matroid
and proved already results closely related to Proposition 5.5 for matroids with
coefficients of finite rank by using Tutte groups. In forthcoming papers, the
concept of the Tutte group will be extended to matroids of arbitrary rank.

Definition 5.7. A dual pair of oriented matroids is a dual pair of matroids
with coefficients in the fuzzy ring K = R//R+. If M – and M∗ – are the
corresponding underlying matroids, then M , together with the corresponding
family (fC)C∈C of circuit functions – or M∗, together with the corresponding
family (rD)D∈C∗ , respectively, is called an oriented matroid.

As above, we consider again hyperplane functions sH for hyperplanes H in
the given oriented matroid – where E \H ∈ C∗.

Remark 5.8. Assume that M is an arbitrary oriented matroid defined on
E with (sH)H∈H as its family of hyperplane functions. With 1 = R+ and
ε = R−, we write for H ∈ H:

H+ = s−1
H ({1}), H− = s−1

H ({ε}).

Certainly, E is the disjoint union of H, H+ and H−.
H+ and H− are called the halfspaces of the hyperplane H.

Definition 5.9. Suppose that H1, H2 are hyperplanes in the given matroid M .
Then the pair (H1, H2) is called a modular pair of hyperplanes, if H1 ∩H2 is
a hyperline.
In this case, the pair (E\H1, E\H2) is also called a modular pair of cocircuits
– in M , while it is, of course, a modular pair of circuits in M∗.
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Proposition 5.10. Suppose that (H1, H2) is a modular pair of hyperplanes in
an oriented matroid M defined on E. Furthermore, assume that

a ∈ (H1
+ ∩H2

−) ∪ (H1
− ∩H2

+).

Then, the uniquely determined hyperplane H3 containing (H1 ∩ H2) ∪ {a}
satisfies

either H3
+ ⊆ H1

+ ∪H2
+ and H3

− ⊆ H1
− ∪H2

−

or H3
+ ⊆ H1

− ∪H2
− and H3

− ⊆ H1
+ ∪H2

+.

Proof. By Proposition 5.5, there exist α1, α2, α3 ∈ {1, ε} such that for all
e ∈ E we have:

α1 · sH1(e) + α2 · sH2(e) + α3 · sH3(e) ∈ K0.

Note that sH3(a) = 0 and that – by assumption: sH1(a) = ε · sH2(a).
By putting e = a, we obtain: α1 = α2.

If α3 = ε · α1 = ε · α2, we get for all e ∈ H3
+:

e ∈ H1
+ or e ∈ H2

+.

Analogously, we get in this case: H3
− ⊆ H1

− ∪H2
−.

If, otherwise, one has α1 = α2 = α3, we get:

H3
+ ⊆ H1

− ∪H2
− and H3

− ⊆ H1
+ ∪H2

+.

�

Remark 5.11. Within the classical theory of finite oriented matroids, it is
often required that all circuits C1, C2 satisfy the following condition:

Whenever a ∈ (C1
+∩C2

−)∪ (C1
−∩C2

+), then there exists a circuit C3 with
a /∈ C3 as well as:

C3
+ ⊆ C1

+ ∪ C2
+ and C3

− ⊆ C1
− ∪ C2

−.

By dualizing this condition, one gets the elimination property as stated in
Proposition 5.10 – for all pairs of different hyperplanes and not only for mod-
ular pairs, if E is finite. However, for infinite E, the condition that (H1, H2)
is a modular pair is essential:

Consider, for example, the matroid M defined on R2 given by affine inde-
pendence, put E := {(x, y)|x, y ∈ R, x 6= −y} ∪ {(−1, 1)} and M := M |E.
Moreover, put

H1 := {(x, 0)|x ∈ R∗}, H2 := {(0, y)| y ∈ R∗},
H1

+ := {(x, y) ∈ E| y > 0}, H1
− := {(x, y) ∈ E| y < 0},

H2
+ := {(x, y) ∈ E|x > 0}, H2

− := {(x, y) ∈ E|x < 0},
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as well as a := (−1, 1). Then one has a ∈ H1
+ ∩H2

−. However, every hyper-
plane H in M that passes through a partitions E \H into 2 halfspaces such
that (exactly) one of these intersects all 4 sets H1

+∩H2
+, H1

+∩H2
−, H1

−∩
H2
−, H1

−∩H2
+. Note that the set {(x, y) ∈ E|x = −y} is not a hyperplane

in M but merely contains a. – However, note also that H1 ∩H2 = ∅, whence
(H1, H2) is not a modular pair of hyperplanes in M .

a

H1

H2

H+
1 \ H�

2

H+
1 \ H+

2

H�
1 \ H�

2

H�
1 \ H+

2

The next definition concerning weakly oriented matroids is slightly different
– but, in the sense of [6] – combinatorially equivalent to that given in [12].

Definition 5.12. A dual pair of weakly oriented matroids is a dual pair of
matroids with coefficients in the fuzzy ring Kw := F7//(F∗7)2.

Remark 5.13. In what follows, put U7 := (F∗7)2 = {x2 |x ∈ F∗7}.
Moreover, write

0 = {0}, 1 = U7, ε = −U7, q = F∗7, ω = F7.

Then the fuzzy ring Kw satisfies:

Kw = {0, 1, ε, q, ω}, K0 = {0, ω}, Kw
∗ = {1, ε}.

Note that Kw is a finitary fuzzy ring by Proposition 3.6.

Furthermore, we have the following addition and multiplication tables:
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+ 0 1 ε q ω
0 0 1 ε q ω
1 1 q ω ω ω
ε ε ω q ω ω
q q ω ω ω ω
ω ω ω ω ω ω

· 0 1 ε q ω
0 0 0 0 0 0
1 0 1 ε q ω
ε 0 ε 1 q ω
q 0 q q q ω
ω 0 ω ω ω ω

Particularly, any three units u1, u2, u3 ∈ K∗ satisfy:

u1 + u2 + u3 = ω.

Moreover, we can carry over the notations H+, H− for halfspaces of hyper-
planes in oriented matroids to weakly oriented matroids.

We conclude: Two families (fC)C∈C of circuit functions and (sH)H∈H of hy-
perplane functions, respectively, automatically constitute a dual pair of ma-
troids with coefficients in Kw, if (DPi) holds and (DPii) holds (at least) for
all circuits C and hyperplanes H with |C ∩H| = 2.

Finally, note the following:
In [12], the product q · q takes the value ω instead of q; elsewhere, the values
in the established tables coincide. The structure studied by M. Wagowski is
not a quotient of a field and a subgroup of its group of units, but has the
advantage that it is a semiring; that means, it satisfies the distributivity law.
However, distributivity is not necessary for our purposes.

Similar to Proposition 5.10, one has:

Proposition 5.14. Suppose that (H1, H2) is a modular pair of hyperplanes in
a weakly oriented matroid M defined on E. Furthermore, assume that

a ∈ (H1
+ ∩H2

−) ∪ (H1
− ∩H2

+).

Then, the uniquely determined hyperplane H3 with (H1 ∩ H2) ∪ {a} ⊆ H3

satisfies either

H3
+ ∩Hi ⊆ Hj

+ and H3
− ∩Hi ⊆ Hj

− for {i, j} = {1, 2}

or

H3
+ ∩Hi ⊆ Hj

− and H3
− ∩Hi ⊆ Hj

+ for {i, j} = {1, 2}.

Note that Proposition 5.10 and Proposition 5.14 show directly that every
dual pair of oriented matroids is also a dual pair of weakly oriented matroids.

For valuated matroids, we clearly have the following proposition – based on
Example 3.4 and the tables presented there:
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Proposition 5.15. Assume that Γ is a linearly ordered abelian group. Two
families (fC)C∈C and (sH)H∈H of circuit functions fC : E → Γ ∪ {0} and
hyperplane functions sH : E → Γ ∪ {0}, respectively, define a dual pair of
valuated matroids, if, beyond Axiom (DPi), the following condition holds:

Given a circuit C and a hyperplane H with C\H 6= ∅, there exist two different
elements e1, e2 ∈ C \H such that for all a ∈ C \H one has:

fC(a) · sH(a) ≤ fC(e1) · sH(e1) = fC(e2) · sH(e2).

Remark 5.16. For tame matroids, the condition in Proposition 5.15 is equiv-
alent to the following one:

Given a circuit C, a hyperplane H with C \ H 6= ∅ as well as an element
a ∈ C \H, there exists an element e ∈ C \H such that

fC(a) · sH(a) ≤ fC(e) · sH(e).

Namely, if C \ H is finite, both conditions mean that a maximum value of
all products of the shape fC(e) · sH(e) for e ∈ C \ H exists at all – and
is attained at least twice. If, however, C \ H is infinite, the last condition
is fulfilled also if no maximum value among the products considered exists.
Hence, for wild matroids, the condition stated here is more general than that
stated in Proposition 5.15. But, as pointed out, this proposition is tailored
to matroids with coefficients in the fuzzy ring KΓ.
It seems an interesting question whether it makes also sense to study more
general vauated matroids within the scope of this remark.
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