T_{5}-CONFIGURATIONS AND NON-RIGID SETS OF MATRICES

CLEMENS FÖRSTER AND LÁSZLÓ SZÉKELYHIDI JR.

Abstract

In 2003 B. Kirchheim-D. Preiss constructed a Lipschitz map in the plane with 5 incompatible gradients, where incompatibility refers to the condition that no two of the five matrices are rank-one connected. The construction is via the method of convex integration and relies on a detailed understanding of the rank-one geometry resulting from a specific set of five matrices. The full computation of the rank-one convex hull for this specific set was later carried out in 2010 by W. Pompe [Pom10] by delicate geometric arguments.

For more general sets of matrices a full computation of the rank-one convex hull is clearly out of reach. Therefore, in this short note we revisit the construction and propose a new, in some sense generic method for deciding whether convex integration for a given set of matrices can be carried out, which does not require the full computation of the rank-one convex hull.

1. Introduction

In this paper we consider differential inclusions of the type

$$
\begin{equation*}
D u(x) \in K \quad x \in \Omega \tag{1}
\end{equation*}
$$

where $K \subset \mathbb{R}^{n \times m}$ is a given compact set of matrices, $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with Lipschitz boundary, and $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a Lipschitz mapping. Being Lipschitz, by Rademacher's theorem u is differentiable almost everywhere and hence (8) makes sense almost everywhere.

Following [Kir01, Kir03] we call a compact set $K \subset \mathbb{R}^{m \times n}$ non-rigid, if the differential inclusion (8) admits non-affine Lipschitz solutions. It is clear that this definition is independent of the choice of Ω. It is moreover well known that if $A, B \in K$ with $\operatorname{rank}(A-B)=1$, then there exists non-affine solutions of (8); these have locally the form $u(x)=C x+a h(x \cdot \xi)$, where $A-B=a \otimes \xi, C \in \mathbb{R}^{m \times n}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$. Such pairs of matrices are called rank-one connections. The more interesting question is to characterize non-rigid sets K which do not contain rank-one connections.

Such problems have received considerable attention in the last couple of decades, in part due to the relevance to problems in non-linear elasticity, but also due to applications of the method of construction to various systems of partial differential equations [KŠM03, MŠ03, SJ04b, AFSJ08, PD05, Zha06, DLSJ09, CFG11, Shv11, SJ12]. In analogy with the well-understood one-dimensional case [Cel05, BF94], a general method for constructing solutions is to consider the relaxation of the problem (8), and then to conclude that typical solutions of the relaxed problem (in a suitable topology) are in fact solutions of the original problem. For the higher dimensional case $m, n \geq 2$ there are two difficulties with this strategy, which need to be overcome:
(a) First, at variance with the one-dimensional case the relaxation is in general not given by the convex hull $K^{c o}$, but could be potentially much smaller.

[^0](b) Second, the iteration for obtaining solutions from relaxed solutions requires suitable modifications.
Concerning (b) there are by now several ways in which the iteration can be carried out; either by a Baire category argument [Kir01, DM97], or by an explicit construction, known as convex integration [MŠ03]; we refer to the lecture notes [SJ14] for a general discussion and comparison of these techniques. The common denominator in these methods is that one needs to find a suitable open (or in case of constraints relatively open) subset $U \subset \mathbb{R}^{m \times n}$ and define approximate solutions of (8) as solutions the corresponding inclusion
\[

$$
\begin{equation*}
D u(x) \in U \quad \text { a.e. } x \in \Omega . \tag{2}
\end{equation*}
$$

\]

In general the properties required on U will imply that U is a subset of the rank-one convex hull $K^{r c}$ (for definitions see Section 2.1 below), but the specific requirements vary from approach to approach. Then, in each particular example of a differential inclusion, one has to construct such a set U.

In this paper we are interested in the stability properties of such a construction. Recall that the map $K \mapsto K^{r c}$ is upper semicontinuous, but in general not lower semicontinuous [Kir03, p.80]. In [Kir01] Kirchheim gave a generic construction of a finite set K without rank-one connections for which the corresponding inclusion (8) admits non-affine solutions and moreover K is stable in the sense that small perturbations of K still have the same property. These sets are finite, but the number of matrices is quite large as the set K is obtained via a compactness argument. On the other hand it is known that the number of matrices in a non-rigid set without rank-one connections can be quite small: an example of Kirchheim and Preiss [Kir03, p.100] shows that 5 matrices suffice (moreover, in [CK02] it was shown that 4 matrices do not suffice, so that 5 is the minimal number). The example of Kirchheim-Preiss is the following: Let $K=\left\{X_{1}, \ldots, X_{5}\right\}$ with

$$
\begin{align*}
& X_{1}=\left(\begin{array}{cc}
\sqrt{3} & -2 \\
-2 & \sqrt{3}
\end{array}\right), X_{2}=\left(\begin{array}{cc}
\sqrt{3} & 2 \\
2 & \sqrt{3}
\end{array}\right), X_{3}=\left(\begin{array}{cc}
-\sqrt{3}+2 & 0 \\
0 & -\sqrt{3}-2
\end{array}\right) \\
& X_{4}=\left(\begin{array}{cc}
-\sqrt{3}-2 & 0 \\
0 & -\sqrt{3}+2
\end{array}\right), X_{5}=\left(\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{3}{4}
\end{array}\right) \tag{3}
\end{align*}
$$

Observe that $K \subset \mathbb{R}_{\text {sym }}^{2 \times 2}$, the space of 2×2 symmetric matrices. Furthermore, it is easy to check that K contains no rank-one connections. The statement in [Kir03, p.100] is the following:

Theorem 1.1. There exists a relatively open subset $U \subset \mathbb{R}_{\text {sym }}^{2 \times 2}$ such that for any $F \in U$ there exists a Lipschitz map $u: \Omega \rightarrow \mathbb{R}^{2}$ satisfying

$$
\begin{array}{cc}
D u \in K & \text { a.e. } x \in \Omega \\
u(x)=F x & x \in \partial \Omega \tag{4}
\end{array}
$$

Moreover, there exists $\varepsilon>0$ such that for any $\tilde{X}_{i} \in \mathbb{R}_{\text {sym }}^{2 \times 2}$ with $\left|X_{i}-\tilde{X}_{i}\right|<\varepsilon$, $i=1, \ldots, 5$, the set $\tilde{K}=\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{5}\right\}$ has the same property (with some perturbed subset $\tilde{U})$.

From this statement it follows immediately that K (and any small perturbation \tilde{K} in symmetric 2×2 matrices) is non-rigid. The proof of existence of the set U in Theorem 1.1 is based on an explicit geometric construction. Subsequently, W. Pompe
calculated in [Pom10] the full rank-one convex hull $K^{r c}$ (and even showed that this agrees with the quasiconvex hull $K^{q c}$), and that one can take $U=$ rel int $K^{r c}$, the topological interior of $K^{r c}$ relative in $\mathbb{R}_{s y m}^{2 \times 2}$.

The aim of this paper is to give a new and in some sense more systematic proof of Theorem 1.1 for five-point sets K as in (3), which moreover shows the stability in the full space $\mathbb{R}^{2 \times 2}$. Noting that generic 5-point configurations in $\mathbb{R}^{2 \times 2}$ do not lie in any 3 -dimensional subspace, this shows that non-rigid sets with minimal number of elements are stable with respect to generic perturbations. A further advantage of our characterization of non-rigid 5 -element sets is that it allows for an algebraic criterion (see Theorem 2.3 below) which can be easily implemented numerically without having to compute the rank-one convex hull.

Our main theorem can be stated as follows:
Theorem 1.2. Let $K=\left\{X_{1}, \ldots, X_{5}\right\} \subset \mathbb{R}^{2 \times 2}$ be a large T_{5} set. Then K is nonrigid.

The definition of large T_{5} set will be given below in Definition 2.6. It follows from Lemma 2.4 below that the property to be a large T_{5} set is stable with respect to generic perturbations.

As explained above, the property of a set K to be non-rigid depends on certain properties of the rank-one convex hull of $K^{r c}$. In this paper we will adopt the approach of [MŠ99, MŠ03] and use the notion of in-approximation of K. Since 5 -point sets in the space $\mathbb{R}^{2 \times 2}$ lie generically in a constrained set given by the determinant (see Lemma 2.5 for the precise statement), we recall the version of convex integration applicable for constraints from [MŠ99]. In what follows, $\Omega \subset \mathbb{R}^{2}$ is a bounded domain and $\Sigma \subset \mathbb{R}^{2 \times 2}$ denotes either the set of matrices

$$
\Sigma=\left\{X \in \mathbb{R}^{2 \times 2}: \operatorname{det} X=1\right\} \text { or } \Sigma=\left\{X \in \mathbb{R}^{2 \times 2}: X \text { is symmetric }\right\} .
$$

The relevant definition and corresponding theorem, specialized to our situation, is as follows:

Definition 1.3. Let $K \subset \Sigma$ compact. We call a sequence of relatively open sets $\left\{U_{k}\right\}_{k=1}^{\infty}$ in Σ an in-approximation of K if

- $U_{k} \subset U_{k+1}^{r c}$ for all i;
- $\sup \operatorname{dist}(X, K) \rightarrow 0$ as $k \rightarrow \infty$. $X \in U_{k}$
Theorem 1.4 ([MŠ99]). Let $K \subset \Sigma$ be a compact set and suppose $\left\{U_{k}\right\}_{k=1}^{\infty}$ is an in-approximation of K. Then for each piecewise affine Lipschitz map $v: \Omega \rightarrow \mathbb{R}^{2}$ with $D v(x) \in U_{1}$ in Ω there exists a Lipschitz map $u: \Omega \rightarrow \mathbb{R}^{2}$ satisfying

$$
\begin{array}{r}
D u(x) \in K \quad \text { a.e. in } \quad \Omega, \\
u(x)=v(x) \quad \text { on } \quad \partial \Omega .
\end{array}
$$

In the statement of the theorem above we have included the case when Σ is the set of 2×2 symmetric matrices. Whilst this case ${ }^{1}$ is not included in [MŠ99], it was treated in [Kir03] Proposition 3.4 and Theorem 3.5. With this result at hand, the proof of Theorem 1.2 reduces to showing that any large T_{5} set admits an inapproximation. This is the content of Theorem 2.8 below.

[^1]
2. T_{N}-Configurations

2.1. Definitions. A function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is said to be rank-one convex if for any $A, B \in \mathbb{R}^{m \times n}$ with rank $B=1$ the restriction $t \mapsto f(A+t B)$ is convex. For a compact set $K \subset \mathbb{R}^{m \times n}$ the rank-one convex hull is defined as

$$
K^{r c}=\left\{A \in \mathbb{R}^{m \times n}: f(A) \leq \sup _{X \in K} f(X) \text { for all rank-one convex } f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}\right\}
$$

It is easy to see that rank-one convexity is invariant under linear transformations of the form

$$
\begin{equation*}
X \mapsto P X Q+B \tag{5}
\end{equation*}
$$

where P, Q are invertible $m \times m$ and $n \times n$ matrices respecively, and $B \in \mathbb{R}^{m \times n}$. In particular, if $P K Q+B=\{P X Q+B: X \in K\}$ then $(P K Q+B)^{r c}=P K^{r c} Q+B$.

For a square matrix X we denote by cof X the cofactor matrix, and by $\langle X, Y\rangle:=$ $\operatorname{tr}\left(X^{T} Y\right)$ the natural scalar product of matrices. In particular, for 2×2 matrices we have $\operatorname{det} X=\frac{1}{2}\langle\operatorname{cof} X, X\rangle$.

We denote by $\left\{X_{1}, \ldots, X_{N}\right\}$ the unordered set of matrices $X_{i}, i=1, \ldots, N$ and by $\left(X_{1}, \ldots, X_{N}\right)$ the ordered N-tuple.
Definition 2.1 (T_{N}-configuration). Let $X_{1}, \ldots, X_{N} \in \mathbb{R}^{m \times n}$ be N matrices such that rank $\left(X_{i}-X_{j}\right)>1$ for all $i \neq j$. The ordered set $\left(X_{1}, \ldots, X_{N}\right)$ is said to be a T_{N} configuration if there exist $P, C_{i} \in \mathbb{R}^{m \times n}$ and $\kappa_{i}>1$ such that

$$
\begin{align*}
& X_{1}=P+\kappa_{1} C_{1} \\
& X_{2}=P+C_{1}+\kappa_{2} C_{2} \tag{6}
\end{align*}
$$

$$
X_{N}=P+C_{1}+\ldots+C_{N-1}+\kappa_{N} C_{N}
$$

and furthermore $\operatorname{rank}\left(C_{i}\right)=1$ and $\sum_{i=1}^{N} C_{i}=0$.
Note that it is certainly possible for a fixed set of N matrices $\left\{X_{1}, \ldots, X_{N}\right\}$ to lead to several T_{N}-configurations corresponding to different orderings. The significance of T_{N}-configurations is given by the following well-known lemma (see for instance [MŠ03, Tar93]):
Lemma 2.2. Suppose $\left(X_{i}\right)_{i=1}^{N}$ is a $T_{N \text {-configuration. Then }}$

$$
\left\{P_{1}, \ldots, P_{N}\right\} \subset\left\{X_{1}, \ldots, X_{N}\right\}^{r c}
$$

where $P_{1}=P$ and $P_{i}=P+\sum_{j=1}^{i-1} C_{j}$ for $i=2, \ldots, N$.
A direct consequence is that the rank-one segments

$$
\left\{P_{i}+t C_{i} \mid 0 \leq t \leq \kappa_{i}\right\}
$$

are also contained in $\left\{X_{1}, \ldots, X_{N}\right\}^{r c}$.
Although Definition 2.1 gives no easy way to decide whether a given ordered N-tuple is a T_{N}-configuration, we recall the following characterization from [SJ05]:

Theorem 2.3 (Algebraic criterion). Suppose $\left(X_{1}, \ldots, X_{N}\right) \in\left(\mathbb{R}^{2 \times 2}\right)^{N}$ and let $A \in$ $\mathbb{R}^{N \times N}$ with $A_{i j}=\operatorname{det}\left(X_{i}-X_{j}\right)$. Then $\left(X_{1}, \ldots, X_{N}\right)$ is a T_{N}-configuration if and only if there exist $\lambda_{1}, \ldots, \lambda_{N}>0$ and $\mu>1$ such that $A^{\mu} \lambda=0$.

Here, for $\mu \in \mathbb{R}$ and $A \in \mathbb{R}_{s y m}^{N \times N}$ with $A_{i i}=0 \quad \forall \quad i=1, \ldots, N$, we define

$$
A^{\mu}=\left(\begin{array}{ccccc}
0 & A_{12} & A_{13} & \ldots & A_{1 N} \tag{7}\\
\mu A_{12} & 0 & A_{23} & \ldots & A_{2 N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mu A_{1 N} & \mu A_{2 N} & \mu A_{3 N} & \ldots & 0
\end{array}\right) .
$$

In fact, from μ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ we can easily compute the parametrization (P, C_{i}, κ_{i}) of the T_{N}-configuration $\left(X_{1}, \ldots, X_{N}\right)$. In particular, recalling the definition of P_{i} from Lemma 2.2, we have (see [SJ05]):

$$
\begin{align*}
P_{1} & =\frac{1}{\lambda_{1}+\cdots+\lambda_{N}}\left(\lambda_{1} X_{1}+\cdots+\lambda_{N} X_{N}\right) \\
P_{2} & =\frac{1}{\mu \lambda_{1}+\lambda_{2}+\cdots+\lambda_{N}}\left(\mu \lambda_{1} X_{1}+\lambda_{2} X_{2}+\cdots+\lambda_{N} X_{N}\right) \tag{8}\\
\vdots & \\
P_{N} & =\frac{1}{\mu \lambda_{1}+\cdots+\mu \lambda_{N-1}+\lambda_{N}}\left(\mu \lambda_{1} X_{1}+\cdots+\mu \lambda_{N-1} X_{N-1}+\lambda_{N} X_{N}\right)
\end{align*}
$$

2.2. Stability. Now we consider the question how T_{5} configurations in the $\mathbb{R}^{2 \times 2}$ behave with respect to small perturbations. Similar problems have been considered in [MŠ03] (T_{4}-configurations in $\mathbb{R}^{4 \times 2}$), [Kir03] (T_{4}-configurations in $\mathbb{R}^{2 \times 2}$) and [SJ04a] (T_{5}-configurations in $\mathbb{R}^{4 \times 2}$). Whilst a simple dimension-count (as in [MŠ03, Kir03, SJ04a]) shows that generic T_{5}-configurations (in the sense of generic choices of P, C_{i}, κ_{i} in the parametrization (6)) are stable with respect to small perturbations in $\mathbb{R}^{2 \times 2}$, the argument below shows that they are always stable.

Lemma 2.4. Let $\left(X_{1}, \ldots, X_{5}\right)$ be a T_{5}-configuration in $\mathbb{R}^{2 \times 2}$ with $\operatorname{det}\left(X_{i}-X_{j}\right) \neq 0$ for all $i \neq j$. Then there exists $\varepsilon>0$ so that any $\left(\tilde{X}_{1}, \ldots, \tilde{X}_{5}\right)$ with $\left|\tilde{X}_{i}-X_{i}\right|<\varepsilon$, $i=1 \ldots 5$, is also a T_{5}-configuration.

Proof. Let $A=\left(\operatorname{det}\left(X_{i}-X_{j}\right)\right)_{i, j=1 \ldots 5}$ and A^{μ} be defined as in (7). Since the first column of A^{μ} contains μ as a factor, it is clear that $\left.\operatorname{det} A^{\mu}\right|_{\mu=0}=0$. Moreover, since $\left(A^{\mu}\right)^{T}=\mu A^{\mu^{-1}}$, we have that $\operatorname{det} A^{\mu}=\mu^{5} \operatorname{det}\left(A^{\mu^{-1}}\right)$. This shows that $\left.\operatorname{det} A^{\mu}\right|_{\mu=-1}=0$. Since $\mu \mapsto \operatorname{det} A^{\mu}$ is a polynomial of degree 4, we deduce

$$
\begin{aligned}
\operatorname{det} A^{\mu} & =\mu(\mu+1)\left(a+b \mu+a \mu^{2}\right) \\
& =a \mu(\mu+1)\left(\mu-\mu^{*}\right)\left(\mu-\frac{1}{\mu^{*}}\right)
\end{aligned}
$$

for some $a, b \in \mathbb{R}$ and $\mu^{*} \in \mathbb{C}$. Furthermore, using Theorem 2.3, since we assume that $\left(X_{1}, \ldots, X_{5}\right)$ is a T_{5}-configuration, we have that $\mu^{*}>1$ and there exists $\lambda^{*} \in \mathbb{R}^{5}$ with $\lambda_{i}^{*}>0$ for all $i=1 \ldots 5$ such that $A^{\mu^{*}} \lambda^{*}=0$.

Next, observe that μ^{*} is a root of $\mu \mapsto \operatorname{det} A^{\mu}$ with multiplicity 1 , hence

$$
0 \neq\left.\frac{d}{d \mu}\right|_{\mu=\mu^{*}} \operatorname{det} A^{\mu}=\left\langle\operatorname{cof}\left(A^{\mu_{*}}\right),\left.\frac{d}{d \mu}\right|_{\mu=\mu_{*}} A^{\mu}\right\rangle
$$

whereas clearly

$$
\left(\frac{d}{d \mu} A^{\mu}\right)_{i j}= \begin{cases}\operatorname{det}\left(X_{i}-X_{j}\right) & i<j, \\ 0 & i \geq j\end{cases}
$$

In particular this implies that adj $\left(A^{\mu_{*}}\right) \neq 0$, so that rank $\left(A^{\mu^{*}}\right)=4$. Consequently the map

$$
A \mapsto(\mu, \lambda)
$$

defined by the equations $\operatorname{det} A^{\mu}=0$ and $A^{\mu} \lambda=0$ is continuous (hence smooth, being a polynomial) in a neighbourhood of (μ^{*}, λ^{*}). But then it easily follows that for all $\left(\tilde{X}_{1}, \ldots, \tilde{X}_{5}\right)$ with $\left|\tilde{X}_{i}-X_{i}\right|$ sufficiently small the corresponding matrix \tilde{A} admits a solution $\tilde{\mu}>1$ and $\tilde{\lambda}$ with $\tilde{\lambda}_{i}>0, i=1 \ldots 5$.

We summarize: T_{5} configurations are stable with respect to small perturbations, and in particular there exists a smooth map

$$
\left(X_{1}, \ldots, X_{5}\right) \mapsto\left(P_{1}, \ldots, P_{5}\right)
$$

in a neighbourhood of any fixed T_{5}-configuration, which maps nearby (ordered) 5tuples to the associated points in Lemma 2.2 and (8).

It was noted in [SJ04a] (see Figure 2.2) that the set $K=\left\{X_{1}, \ldots, X_{5}\right\}$ in (3) corresponds to 12 different T_{5} configurations, associated to the orderings

$$
\begin{aligned}
& {[1,2,3,5,4],[1,2,4,5,3],[1,2,5,3,4],[1,2,5,4,3]} \\
& {[1,3,2,5,4],[1,3,5,4,2],[1,4,2,5,3],[1,4,5,3,2]} \\
& {[1,5,3,2,4],[1,5,3,4,2],[1,5,4,2,3],[1,5,4,3,2] .}
\end{aligned}
$$

Then, according to Lemma 2.4 each of these orderings leads to a T_{5}-configuration for small perturbations $\left\{\tilde{X}_{1}, \ldots, \tilde{X}_{5}\right\}$ in the full space $\mathbb{R}^{2 \times 2}$. Now, generic 5 -point sets in $\mathbb{R}^{2 \times 2}$ need not satisfy any affine constraint, but they nevertheless satisfy a polyaffine constraint; this is the content of the following lemma:

Lemma 2.5. Let $\left(X_{1}, \ldots, X_{5}\right)$ be a T_{5}-configuration in $\mathbb{R}^{2 \times 2}$. Then there exist invertible matrices $P, Q \in \mathbb{R}^{2 \times 2}$ and a matrix $B \in \mathbb{R}^{2 \times 2}$ such that one of the following holds for the transformed 5-tuple ($Y_{1}, \ldots Y_{5}$), where $Y_{i}=P X_{i} Q+B$:
(i) Y_{i} is symmetric for all i; or
(ii) $\operatorname{det}\left(Y_{i}\right)=1$ for all i.

Proof. Step 1. Let $z_{i}=\left(X_{i}, \operatorname{det} X_{i}\right) \in \mathbb{R}^{2 \times 2} \times \mathbb{R}, i=1 \ldots 5$. If the vectors z_{1}, \ldots, z_{5} are linearly independent, there exists $F \in \mathbb{R}^{2 \times 2}$ and $f \in \mathbb{R}$ such that

$$
\left\langle F, X_{i}\right\rangle+f \operatorname{det} X_{i}=1 \quad \text { for all } i=1 \ldots 5 .
$$

On the other hand if the vectors z_{1}, \ldots, z_{5} are linearly dependent, then there exists $F \in \mathbb{R}^{2 \times 2}$ and $f \in \mathbb{R}$ such that $(F, f) \neq(0,0)$ and

$$
\left\langle F, X_{i}\right\rangle+f \operatorname{det} X_{i}=0 \quad \text { for all } i=1 \ldots 5 .
$$

In either case there exist a nontrivial pair $(F, f) \in \mathbb{R}^{2 \times 2} \times \mathbb{R}$ such that

$$
\begin{equation*}
\left\langle F, X_{i}\right\rangle+f \operatorname{det} X_{i}=\alpha \quad \text { for all } i=1 \ldots 5 \tag{9}
\end{equation*}
$$

for some $\alpha \in \mathbb{R}$.
Step 2. Suppose $f=0$. Then $\tilde{X}_{i}:=X_{i}-\alpha \frac{F}{|F|^{2}}$ satisfies $\left\langle F, \tilde{X}_{i}\right\rangle=0$ for all i. Assume for a contradiction that $\operatorname{det} F=0$, so that $F=\eta \otimes \xi$ for some nonzero $\eta, \xi \in \mathbb{R}^{2}$. By choosing suitable invertible matrices P, Q we deduce that $Y_{i}=P \tilde{X}_{i} Q$ satisfies

Figure 1. The plot from [SJ04a] showing the 12 different T_{5} configurations associated to the set $\left\{X_{1}, \ldots, X_{5}\right\}$ in (3). The one-sheeted hyperboloid corresponding to $\{\operatorname{det}=-1\}$ is shown in grey.
$\left\langle Y_{i}, e_{1} \otimes e_{2}\right\rangle=0$ for all i, in other words Y_{i} is lower-triangular. Let \tilde{Y}_{i} be the projection of Y_{i} onto the diagonal. Then $\operatorname{det}\left(\tilde{Y}_{i}-\tilde{Y}_{j}\right)=\operatorname{det}\left(Y_{i}-Y_{j}\right)=c \operatorname{det}\left(X_{i}-X_{j}\right)$ with $c=\operatorname{det}(P Q) \neq 0$, so that, since $\left(X_{1}, \ldots, X_{5}\right)$ is a T_{5}-configuration, so is $\left(\tilde{Y}_{1}, \ldots, \tilde{Y}_{5}\right)$. However, in the diagonal plane there exist no T_{5} configurations; Indeed, if \tilde{C}_{i} are the corresponding rank-one vectors, the condition $\operatorname{det}\left(\tilde{Y}_{i}-\tilde{Y}_{j}\right) \neq 0$ require that \tilde{C}_{i} is not parallel to \tilde{C}_{i+1} (with $\tilde{C}_{6}=\tilde{C}_{1}$). However, in the diagonal plane there are only two rank-one directions, making this requirement an impossibility.

We conclude that $\operatorname{det} F \neq 0$. But then setting $P=F^{-T} J$ with

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and $Y_{i}=P \tilde{X}_{i}$ leads to the equality $\left\langle J, Y_{i}\right\rangle=0$, therefore Y_{i} is symmetric.
Step 3. Now suppose that $f \neq 0$. Then without loss of generality we may assume that (9) is satisfied with $f=1$. Let $B \in \mathbb{R}^{2 \times 2}$ such that cof $B=-F$ (since for 2×2 matrices cof cof $B=B$, we can simply take $B=-\operatorname{cof} F$) and set $\tilde{X}_{i}=X_{i}-B$.

Then

$$
\begin{aligned}
\operatorname{det} \tilde{X}_{i} & =\operatorname{det} X_{i}-\left\langle\operatorname{cof} B, X_{i}\right\rangle+\operatorname{det} B \\
& =\alpha-\left\langle\operatorname{cof} B+F, X_{i}\right\rangle+\operatorname{det} B \\
& =\alpha+\operatorname{det} B=: \beta
\end{aligned}
$$

Assume for a contradiction that $\beta=0$. Then $\operatorname{det}\left(X_{i}-X_{j}\right)=-\left\langle\operatorname{cof}\left(\tilde{X}_{i}\right), \tilde{X}_{j}\right\rangle$. Let $v \in \mathbb{R}^{5}$ a nonzero vector such that $\sum_{i=1}^{5} v_{i} \tilde{X}_{i}=0$ (such a vector exists since $\left.\tilde{X}_{i} \in \mathbb{R}^{2 \times 2}\right)$. Then

$$
\sum_{i=1}^{5} v_{j}\left\langle\operatorname{cof}\left(\tilde{X}_{i}\right), \tilde{X}_{j}\right\rangle=0 \quad \text { for all } i=1 \ldots 5
$$

hence $A v=0$, where A is as in Theorem 2.3. But as shown in Lemma 2.4, $\mu=1$ cannot be a zero of the polynomial $\mu \mapsto \operatorname{det} A^{\mu}$ if A corresponds to a T_{5} configuration, a contradiction. We conclude that $\beta \neq 0$. We can then easily choose P so that $Y_{i}=P \tilde{X}_{i}$ satisfies $\operatorname{det} Y_{i}=1$ for all i.

We recall that if $K \subset \mathbb{R}^{2 \times 2}$ is a compact set such that $K \subset\{\operatorname{det} X=1\}$, then also $K^{r c}$ (in fact also $K^{p c}$, the polyconvex hull) is contained in the set $\{\operatorname{det} X=1\}$. The preceeding lemma therefore implies that in general the rank-one convex hull of T_{5}-configurations is contained - possibly after performing the transformations $X \mapsto P X Q+B-$ in the subspace of symmetric matrices, or in the 3 -dimensional manifold $\{X: \operatorname{det} X=1\}$.
2.3. Construction of an in-approximation. We will use this stability theorem to build an in-approximation for a large T_{5}-configuration. As shown by the example (3), a 5 -point set may give rise to several different T_{5}-configurations, corresponding to different orderings of the set. In order to analyse such situations, let $\left\{X_{1}^{0}, \ldots, X_{5}^{0}\right\}$ be a 5 -element set and let S_{5} be the permutation group of 5 elements. To any $\sigma \in S_{5}$ is associated a 5 -tuple $\left(X_{\sigma(1)}^{0} \ldots, X_{\sigma(5)}^{0}\right)$. If this 5 -tuple is a T_{5}-configuration, then according to Lemma 2.4 there exists a smooth map

$$
\left(X_{\sigma(1)}, \ldots, X_{\sigma(5)}\right) \mapsto\left(P_{\sigma(1)}^{\sigma}, \ldots, P_{\sigma(5)}^{\sigma}\right)
$$

defined in a neighbourhood of $\left(X_{\sigma(1)}^{0}, \ldots, X_{\sigma(5)}^{0}\right)$, where $P_{\sigma(i)}^{\sigma}$ are the corresponding matrices from Lemma 2.2, so that in particular

$$
\operatorname{rank}\left(P_{\sigma(i)}^{\sigma}-X_{\sigma(i)}\right)=1 \text { and } P_{\sigma(i)}^{\sigma} \in\left\{X_{1}, \ldots, X_{5}\right\}^{r c}
$$

Let

$$
\begin{equation*}
C_{i}^{\sigma}:=P_{i}^{\sigma}-X_{i} \tag{10}
\end{equation*}
$$

and define the map $\Phi^{\sigma}: B_{r}\left(X^{0}\right) \rightarrow\left(\mathbb{R}^{2 \times 2}\right)^{5}$ by

$$
\begin{equation*}
\Phi^{\sigma}(X)=\left(C_{1}^{\sigma}, \ldots, C_{5}^{\sigma}\right) \tag{11}
\end{equation*}
$$

where we write $X^{0}=\left(X_{1}^{0}, \ldots, X_{5}^{0}\right)$ and $X=\left(X_{1}, \ldots, X_{5}\right)$. By the preceeding discussion we see that, provided σ leads to a T_{5}-configuration $\left(X_{\sigma(1)}^{0} \ldots, X_{\sigma(5)}^{0}\right)$, the map Φ^{σ} is a well-defined and smooth map in a neighbourhood $B_{r}\left(X^{0}\right)$ for some $r>0$.

Definition 2.6. We call a five-point set $\left\{X_{1}^{0}, \ldots, X_{5}^{0}\right\} \subset\left(\mathbb{R}^{2 \times 2}\right)^{5}$ a large T_{5}-set if there exist at least three permutations $\sigma_{1}, \sigma_{2}, \sigma_{3}$ such that $\left(X_{\sigma_{j}(1)}^{0}, \ldots, X_{\sigma_{j}(5)}^{0}\right)$ is a T_{5}-configuration for each $j=1,2,3$, and moreover the associated rank-one matrices $C_{i}^{\sigma_{1}}, C_{i}^{\sigma_{2}}, C_{i}^{\sigma_{3}}$ are linearly independent for all $i=1, \ldots, 5$.

In view of the stability result Lemma 2.4 we immediately see that large T_{5} sets are stable with respect to small perturbations. Moreover, by Lemma 2.5 each large T_{5} set is contained in a 3 -dimensional subset Σ, where - modulo a linear transformation of the form (5) - either $\Sigma=\{X: \operatorname{det} X=1\}$ or $\Sigma=\mathbb{R}_{\text {sym }}^{2 \times 2}$. Finally, it is not difficult to check directly that the set from (3) is a large T_{5} set.

The aim of the following theorem is to construct a stable parametrization of the rank-one convex hull of a large T_{5} set.

Proposition 2.7. Let $K=\left\{X_{1}^{0}, \ldots, X_{5}^{0}\right\}$ be a large T_{5} set and set $X^{0}:=\left(X_{1}^{0}, \ldots, X_{5}^{0}\right) \in$ $\left(\mathbb{R}^{2 \times 2}\right)^{5}$. Then there exists $\delta>0$ and for each $i=1, \ldots, 5$ smooth maps

$$
p_{i}:(-\delta, \delta)^{3} \times B_{\delta}\left(X^{0}\right) \rightarrow \mathbb{R}^{2 \times 2}
$$

with the following properties:
(a) the $\operatorname{map} \xi \mapsto p_{i}(\xi, X)$ is an embedding for each X;
(b) $p_{i}(\xi, X) \in\left\{X_{1}, \ldots, X_{5}\right\}^{r c}$ for all $\xi \in[0, \delta)^{3}$;
(c) $p_{i}(0, X)=X_{i}$.

Proof. By the discussion preceeding Definition 2.6 there exists $r>0$ and smooth maps

$$
\Phi^{\sigma_{j}}: B_{r}\left(X^{0}\right) \rightarrow\left(\mathbb{R}^{2 \times 2}\right)^{5} \quad j=1,2,3
$$

such that, writing $C_{i}^{\sigma_{j}}(X):=\Phi_{i}^{\sigma_{j}}(X)$ we have $\operatorname{rank} \Phi_{i}^{\sigma_{j}}(X)=1$ and

$$
X_{i}+t \Phi_{i}^{\sigma_{j}}(X) \in\left\{X_{1}, \ldots, X_{5}\right\}^{r c} \quad \text { for all } t \in[0,1]
$$

for any $X \in B_{r}\left(X^{0}\right)$ and $i=1 \ldots 5$.
We fix without loss of generality $i=1$ and define p_{1} as follows. Let $X \in B_{r / 8}\left(X^{0}\right)$. For $\xi_{1} \in\left(-r_{1}, r_{1}\right)$, with $r_{1}>0$ to be fixed, define $X^{\sigma_{1}}\left(\xi_{1}\right)$ to be the 5 -tuple

$$
X^{\sigma_{1}}\left(\xi_{1}\right):=\left(X_{1}+\xi_{1} \Phi_{1}^{\sigma_{1}}(X), X_{2}, \ldots, X_{5}\right)
$$

Observe that the map

$$
\left(X, \xi_{1}\right) \mapsto X^{\sigma_{1}}\left(\xi_{1}\right)
$$

is well-defined and smooth for $\left(X, \xi_{1}\right) \in B_{r / 8}\left(X^{0}\right) \times \mathbb{R}$ with $X^{\sigma_{1}}(0)=X$. Moreover, by the construction of $\Phi^{\sigma_{1}}$ we have

$$
\begin{equation*}
X_{1}+\xi_{1} \Phi_{1}^{\sigma_{1}}(X) \in\left\{X_{1}, \ldots, X_{5}\right\}^{r c} \quad \text { for all } \xi_{1} \in[0,1] \tag{12}
\end{equation*}
$$

Fix $r_{1}>0$ so that

$$
X^{\sigma_{1}}\left(\xi_{1}\right) \in B_{r / 4}\left(X^{0}\right) \quad \text { for all }\left(X, \xi_{1}\right) \in B_{r / 8}\left(X^{0}\right) \times\left(-r_{1}, r_{1}\right)
$$

Next, for $\left(\xi_{1}, \xi_{2}\right) \in\left(-r_{1}, r_{1}\right) \times\left(-r_{2}, r_{2}\right)$ with $r_{2}<r_{1}$ define

$$
X^{\sigma_{1} \sigma_{2}}\left(\xi_{1}, \xi_{2}\right):=\left(X_{1}+\xi_{1} \Phi_{1}^{\sigma_{1}}(X)+\xi_{2} \Phi_{1}^{\sigma_{2}}\left(X^{\sigma_{1}}\left(\xi_{1}\right)\right), X_{2}, \ldots, X_{5}\right)
$$

As before, the map

$$
\left(X, \xi_{1}, \xi_{2}\right) \mapsto X^{\sigma_{1} \sigma_{2}}\left(\xi_{1}, \xi_{2}\right)
$$

is well-defined and smooth for $\left(X, \xi_{1}, \xi_{2}\right) \in B_{r / 8}\left(X^{0}\right) \times\left(-r_{1}, r_{1}\right) \times \mathbb{R}$ with $X^{\sigma_{1} \sigma_{2}}\left(\xi_{1}, 0\right)=$ $X^{\sigma_{1}}\left(\xi_{1}\right)$. Consequently we can choose $r_{2}>0$ sufficiently small so that

$$
X^{\sigma_{1} \sigma_{2}}\left(\xi_{1}, \xi_{2}\right) \in B_{r / 2}\left(X^{0}\right) \quad \text { for all }\left(X, \xi_{1}, \xi_{2}\right) \in B_{r / 8}\left(X^{0}\right) \times\left(-r_{1}, r_{1}\right) \times\left(-r_{2}, r_{2}\right)
$$

Furthermore, by the construction of $\Phi^{\sigma_{2}}$ we have

$$
X_{1}+\xi_{1} \Phi_{1}^{\sigma_{1}}(X)+\xi_{2} \Phi_{1}^{\sigma_{2}}\left(X^{\sigma_{1}}\left(\xi_{1}\right)\right) \in\left\{X_{1}+\xi_{1} \Phi_{1}^{\sigma_{1}}(X), X_{2}, \ldots, X_{5}\right\}^{r c}
$$

for all $\xi_{2} \in[0,1]$. In combination with (12) this leads to
(13) $X_{1}+\xi_{1} \Phi_{1}^{\sigma_{1}}(X)+\xi_{2} \Phi_{1}^{\sigma_{2}}\left(X^{\sigma_{1}}\left(\xi_{1}\right)\right) \in\left\{X_{1}, \ldots, X_{5}\right\}^{r c} \quad$ for all $\xi_{1}, \xi_{2} \in\left[0, r_{2}\right]$.

Finally, we define $p_{1}(\xi, X)$ for $X \in B_{r / 8}\left(X^{0}\right)$ and $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ as

$$
\begin{equation*}
p_{1}(\xi, X):=X_{1}+\xi_{1} \Phi_{1}^{\sigma_{1}}(X)+\xi_{2} \Phi_{1}^{\sigma_{2}}\left(X^{\sigma_{1}}\left(\xi_{1}\right)\right)+\xi_{3} \Phi_{1}^{\sigma_{3}}\left(X^{\sigma_{1} \sigma_{2}}\left(\xi_{1}, \xi_{2}\right)\right) . \tag{14}
\end{equation*}
$$

Then p_{1} is well-defined and smooth for $(\xi, X) \in\left(-r_{1}, r_{1}\right) \times\left(-r_{2}, r_{2}\right) \times \mathbb{R} \times B_{r / 8}\left(X^{0}\right)$ and clearly $p_{1}(0, X)=X_{1}$. By the construction of $\Phi^{\sigma_{3}}$ we have, as before,

$$
\begin{equation*}
p_{1}(\xi, X) \in\left\{X_{1}, \ldots, X_{5}\right\}^{r c} \quad \text { for all } \xi \in\left[0, r_{2}\right]^{3} . \tag{15}
\end{equation*}
$$

Next, observe that

$$
\left.\frac{\partial}{\partial \xi_{j}}\right|_{\xi=0} p_{1}\left(\xi, X^{0}\right)=\Phi_{1}^{\sigma_{j}}\left(X^{0}\right),
$$

so that, by the assumption that $\left\{X_{1}^{0}, \ldots, X_{5}^{0}\right\}$ is a large T_{5}-set, $\partial_{\xi} p_{1}\left(0, X^{0}\right)$ has full rank. Consequently, by the implicit function theorem the map

$$
\xi \mapsto p_{1}(\xi, X)
$$

is a local embedding near $\xi=0$ for any X with $\left|X-X^{0}\right|$ sufficiently small.
In summary, we can choose $\delta>0$ sufficiently small so that the properties (a)(c) hold for the map p_{1}. The construction of p_{2}, \ldots, p_{5} is entirely analogous. This concludes the proof.

Now we are ready to construct an in-approximation of a large T_{5} set.
Theorem 2.8. Let $K=\left\{X_{1}^{0} \ldots, X_{5}^{0}\right\}$ be a large T_{5} set. Then there exists an in-approximation $\left(U_{n}\right)_{n \in \mathbb{N}}$ of K.

Proof. Let Σ be the associated constraint set from Lemma 2.5, so that $K \subset \Sigma$ and - without loss of generality - either $\Sigma=\{X: \operatorname{det} X=1\}$ or $\Sigma=\left\{X: X^{T}=X\right\}$. Define for all $i=1, \ldots, 5$ and $X \in B_{\delta}\left(X^{0}\right)$ the sets

$$
V_{i}(X):=\left\{p_{i}(\xi, X) \mid \xi \in(0, \delta)^{3}\right\} .
$$

Recall from Proposition 2.7 that $V_{i}(X)$ is relatively open in Σ such that

$$
V_{i}(X) \subset K^{r c}
$$

and moreover $V_{i}(X) \rightarrow V_{i}\left(X^{0}\right)$ if $X \rightarrow X^{0}$.
We construct successively a sequence of 5 -tuples

$$
X^{(n)}=\left(X_{1}^{(n)}, \ldots, X_{5}^{(n)}\right)
$$

and radii $0<r_{n}<1 / n$ with the following properties: for all $n=1,2, \ldots$
(a) $X_{i}^{(n)} \in V_{i}\left(X^{0}\right) \cap B_{1 / n}\left(X_{i}^{0}\right)$;
(b) $V_{i}\left(X^{(n+1)}\right) \supset \overline{B_{r_{n}}\left(X_{i}^{(n)}\right)} \cap \Sigma$.

To start with, fix arbitrary matrices $X_{i}^{(1)} \in V_{i}\left(X^{0}\right)$ for $i=1, \ldots 5$. Since $V_{i}\left(X^{0}\right)$ is relatively open in Σ, there exists $r_{1}<1$ such that

$$
\overline{B_{r_{1}}\left(X_{i}^{(1)}\right)} \cap \Sigma \subset V_{i}\left(X^{0}\right)
$$

Next, having constructed $X^{(k)}, r_{k}$ for $k=1, \ldots, n$ with the properties (a)-(b) for all $k=1, \ldots, n$, we choose $X_{i}^{(n+1)} \in V_{i}\left(X^{0}\right) \cap B_{1 /(n+1)}\left(X_{i}^{0}\right)$ for $i=1, \ldots, 5$ such that

$$
\overline{B_{r_{n}}\left(X_{i}^{(n)}\right)} \cap \Sigma \subset V_{i}\left(X^{(n+1)}\right)
$$

Such a choice is possible by the continuity of the maps $P \mapsto V_{i}(P)$ and since $V_{i}\left(X^{0}\right)$ is relatively open in Σ. Finally, we fix $0<r_{n+1}<1 /(n+1)$ so that in addition

$$
\overline{B_{r_{n+1}}\left(X_{i}^{(n+1)}\right)} \cap \Sigma \subset V_{i}\left(X^{0}\right)
$$

for all $i=1, \ldots, 5$.
To conclude with the proof of the theorem, we define

$$
U_{n}:=\bigcup_{i=1}^{5} B_{r_{n}}\left(X_{i}^{(n)}\right) \cap \Sigma
$$

Note that U_{n} is a relatively open subset of Σ with

$$
U_{n} \subset \bigcup_{i=1}^{5} V_{i}\left(X^{(n+1)}\right) \subset\left\{X_{1}^{(n+1)}, \ldots, X_{5}^{(n+1)}\right\}^{r c} \subset U_{n+1}^{r c}
$$

and, since $X_{i}^{(n)} \rightarrow X_{i}^{0}$ and $r_{n} \rightarrow 0$ as $n \rightarrow \infty$, we also have that

$$
\sup _{Y \in U_{n}} \operatorname{dist}(Y, K) \rightarrow 0 \text { as } n \rightarrow \infty
$$

References

[AFSJ08] Kari Astala, Daniel Faraco, and László Székelyhidi Jr, Convex integration and the L^{p} theory of elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 1, 1-50.
[BF94] Alberto Bressan and Fabián Flores, On total differential inclusions, Rend. Sem. Mat. Univ. Padova 92 (1994), 9-16.
[Cel05] Arrigo Cellina, A view on differential inclusions, Rend. Semin. Mat. Univ. Politec. Torino 63 (2005), no. 3, 197-209.
[CFG11] Diego Córdoba, Daniel Faraco, and Francisco Gancedo, Lack of uniqueness for weak solutions of the incompressible porous media equation, Arch. Rational Mech. Anal. 200 (2011), no. 3, 725-746.
[CK02] Miroslav Chlebik and Bernd Kirchheim, Rigidity for the four gradient problem, J. Reine Angew. Math. 2002 (2002), no. 551, 1-9.
[DLSJ09] Camillo De Lellis and László Székelyhidi Jr, The Euler equations as a differential inclusion, Ann. of Math. (2) $\mathbf{1 7 0}$ (2009), no. 3, 1417-1436.
[DM97] Bernard Dacorogna and Paolo Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), no. 1, 1-37.
[Kir01] Bernd Kirchheim, Deformations with finitely many gradients and stability of quasiconvex hulls, C. R. Math. Acad. Sci. Paris 332 (2001), no. 3, 289-294.
[Kir03] , Rigidity and Geometry of Microstructures, Habilitation Thesis, Univ. Leipzig, 2003.
[KŠM03] Bernd Kirchheim, Vladimir Šverák, and Stefan Müller, Studying nonlinear pde by geometry in matrix space, Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003, pp. 347-395.
[MŠ99] Stefan Müller and Vladimir Šverák, Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. 1 (1999), no. 4, 393-422.
[MŠ03] , Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math. 157 (2003), no. 3, 715-742.
[PD05] Giovanni Pisante and Bernard Dacorogna, A general existence theorem for differential inclusions in the vector valued case, Port. Math. (N.S.) 62 (2005), no. 4, 421-436.
[Pom10] Waldemar Pompe, The quasiconvex hull for the five-gradient problem, Calc. Var. PDE 37 (2010), no. 3-4, 461-473.
[Shv11] Roman Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc. 24 (2011), no. 4, 1159-1174.
[SJ04a] László Székelyhidi Jr, Elliptic Regularity versus Rank-one Convexity, Ph.D. thesis, University of Leipzig, 2004.
[SJ04b] , The regularity of critical points of polyconvex functionals, Arch. Rational Mech. Anal. 172 (2004), no. 1, 133-152.
[SJ05] ——, Rank-one convex hulls in $R^{2 \times 2}$, Calc. Var. PDE 22 (2005), no. 3, 253-281.
[SJ12] , Relaxation of the incompressible porous media equation, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 3, 491-509.
[SJ14] , From Isometric Embeddings to Turbulence, HCDTE Lecture Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, American Institute of Mathematical Sciences, 2014, pp. 1-66.
[Tar93] Luc Tartar, Some Remarks on Separately Convex Functions, Microstructure and phase transition, Springer, New York, NY, New York, NY, 1993, pp. 191-204.
[Zha06] Kewei Zhang, Existence of infinitely many solutions for the one-dimensional PeronaMalik model, Calc. Var. PDE 26 (2006), no. 2, 171-199.

Institut für Mathematik, Universität Leipzig, D-04103 Leipzig, Germany
E-mail address: clemens.foerster@math.uni-leipzig.de
Institut für Mathematik, Universität Leipzig, D-04103 Leipzig, Germany
E-mail address: laszlo.szekelyhidi@math.uni-leipzig.de

[^0]: Date: October 10, 2017.
 L.Sz. gratefully acknowledges the support of the ERC Grant Agreement No. 724298.

[^1]: ${ }^{1}$ In some sense this case can be seen as a limiting case from $\Sigma_{t}=\{X: \operatorname{det} X=t\}$ with $t \rightarrow \infty$, see the proof of Lemma 2.5 below.

