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ONSAGER’S CONJECTURE ALMOST EVERYWHERE IN

TIME

TRISTAN BUCKMASTER

Abstract. In recent work by P. Isett [15], and later by Buckmaster,
De Lellis and Székelyhidi Jr. [2], iterative schemes where presented for

constructing solutions belonging to the Hölder class C
1/5−ε of the 3D

incompressible Euler equations which do not conserve energy. The cited
work is partially motivated by a conjecture of Lars Onsager in 1949 re-
lating to the existence of C

1/3−ε solutions to the Euler equations which
dissipate energy. In this note we show how the later scheme can be
adapted in order to prove the existence of non-trivial Hölder continu-
ous solutions which for almost every time belong to the critical Onsager
Hölder regularity C

1/3−ε and have compact temporal support. The so-
lutions constructed display characteristics reminiscent to the concept of
intermittency found in literature related to highly turbulent flows.

0. Introduction

In what follows T3 denotes the 3-dimensional torus, i.e. T3 = S
1×S

1×S
1.

Formally, we say (v, p) solves the incompressible Euler equations if
{
∂tv + div v ⊗ v +∇p = 0
div v = 0

. (1)

Suppose v is such a solution, then we define its kinetic energy, as

E(t) :=
1

2

ˆ

|v(x, t)|2 dx.

A simple calculation applying integration by parts yields that for any classi-
cal solution of (1) the kinetic energy is in fact conserved in time. This formal
calculation does not however hold for distributional solutions to Euler (cf.
[19, 20, 5, 6, 21, 8]).

In fact in the context of 3-dimensional turbulence, flows dissipating energy
in time have long been considered. A key postulate of Kolmogorov’s K41
theory [16] is that for homogeneous, isotropic turbulence, the dissipation rate
is non-vanishing in the inviscid limit. In particular, defining the structure
functions for homogeneous, isotropic turbulence

Sp(ℓ) :=

〈[

(v(x+ ℓ̂)− v(x)) · ℓ̂
ℓ

]p〉

,
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where ℓ̂ denotes a spatial vector of length ℓ, Kolmogorov’s famous four-fifths
law can be stated as

S3(ℓ) = −4

5
εdℓ, (2)

where here εd denotes the mean energy dissipation per unit mass. More
generally, Kolmogorov’s scaling laws can be stated as

Sp(ℓ) = Cpε
p/3
d ℓ

p/3, (3)

for any positive integer p.
A well known consequence of the above scaling laws is the Kolmogorov

spectrum, which postulates a scaling relation on the ‘energy spectrum’ of a
turbulent flow (cf. [14, 12]). It was this observation that provided motivation
for Onsager to conjecture in his famous note [18] on statistical hydrodynam-
ics, the following dichotomy:

(a) Any weak solution v belonging to the Hölder space Cθ for θ > 1
3

conserves the energy.
(b) For any θ < 1

3 there exist weak solutions v ∈ Cθ which do not
conserve the energy.

Part (a) of this conjecture has since been resolved: it was first considered
by Eyink in [11] following Onsager’s original calculations and later proven by
Constantin, E and Titi in [4]. Subsequently, this later result was strength-
ened by showing that under weakened assumptions on v (in terms of Besov
spaces) kinetic energy is conserved [10, 3].

Part (b) remains an open conjecture and is the subject of this note. The

first constructions of non-conservative Hölder-continuous (C1/10−ε) weak so-
lutions appeared in work of De Lellis and Székelyhidi Jr. [7], which itself was
based on their earlier seminal work [9] where continuous weak solutions were
constructed. Furthermore, it was shown in the mentioned work that such
solutions can be constructed obeying any prescribed smooth non-vanishing
energy profile. In recent work [15], P. Isett introduced a number of new ideas
in order to construct non-trivial 1/5 − ε Hölder-continuous weak solutions
with compact temporal support. This construction was later improved by
Buckmaster, De Lellis and Székelyhidi Jr. [2], following more closely the ear-
lier work [9, 7], in order construct 1/5 − ε Hölder-continuous weak solution
obeying a given energy profile.

In this note we give a proof of the following theorem.

Theorem 0.1. There exists is a non-trivial continuous vector field v ∈
C

1/5−ε(T3×(−1, 1),R3) with compact support in time and a continuous scalar

field p ∈ C
2/5−2ε(T3 × (−1, 1)) with the following properties:

(i) The pair (v, p) solves the incompressible Euler equations (1) in the
sense of distributions.
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(ii) There exists a set Ω ⊂ (−1, 1) of Hausdorff dimension strictly less

than 1 such that if t /∈ Ω then v(·, t) is Hölder C1/3−ε continuous

and p is Hölder C2/3−2ε continuous1.

Relation to intermittency. The theory of intermittency is born of an
effort to explain the experimental and numerical evidence (e.g. [1]) of mea-
surable discrepancies from the scaling laws (3) (cf. [13]). In this direction,
Mandelbrot conjectured [17] that at the inviscid limit, turbulence concen-
trates (in space) on a fractal set of Hausdorff dimension strictly less than
3.

It is interesting to note that the solutions constructed in order to prove
the above theorem have a fractal structure in time: namely, the set of times
for which v is not Hölder C1/3−ε continuous is contained in a Cantor-like set
with Hausdorff dimension strictly less than 1. Since the phenomena observed
does not relate to the structure functions from which intermittency was
originally postulated – being temporal in nature rather than spatial – it is
clearly far-fetched to label such a phenomena as intermittency. Nevertheless,
it is the opinion of the author that the parallels to the notion of intermittency
remain of interest.

0.1. Euler-Reynolds system and the convex integration scheme. In
order to prove Theorem 0.1 we construct an iteration scheme in the style
of [2], which is itself based on the schemes presented in [9, 7]. At each step

q ∈ N we construct a triple (vq, pq, R̊q) solving the Euler-Reynolds system
(see Definition 2.1 in [9]):







∂tvq + div (vq ⊗ vq) +∇pq = div R̊q

div vq = 0 .
(4)

The initial triple (v0, p0, R̊0) will be non-trivial with compact support in
time; all triples thereafter will be defined inductively as perturbations of the
proceeding triples. The perturbation

wq := vq − vq−1,

will be composed of weakly interacting perturbed Beltrami flows (see Sec-
tion 1) oscillating at frequency λq, defined in such a way to correct for the

previous Reynolds error R̊q−1.

1More precisely, the Hausdorff dimension d is such that 1− d > Cε
2 for some positive

constant C.
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In order to ensure convergence of the sequence vq to a continuous weak

C
1/5−ε solution of Euler, we will require the following estimates to be satisfied

‖wq‖0 +
1

λq
‖∂twq‖0 +

1

λq
‖wq‖1 ≤ λ−1/5+ε0

q (5)

‖pq − pq−1‖0 +
1

λq
‖∂t(pq − pq−1)‖0 +

1

λ2q
‖pq − pq−1‖2 ≤ λ−

2/5+2ε0
q (6)

∥
∥
∥R̊q

∥
∥
∥
0
+

1

λq

∥
∥
∥R̊q

∥
∥
∥
1
≤ λ

−2/5+2ε0
q+1 (7)

for some ε0 > 0 strictly smaller than ε. Here and throughout the article,
‖·‖β for β = m + κ, β ∈ N and κ ∈ [0, 1) will denote the usual spatial

Hölder Cm,κ norm. As a minor point of deviation from [2], we keep track
of second order spatial derivative estimates of pq − pq−1, whereas in [2] first
order estimates – which in the present work are implicit by interpolation –
were sufficient. These second order estimates will be used in order to obtain
slightly improved bounds on the Reynolds stress (see Section 5).

It is perhaps worth noting that aside from the second order estimate on
pq−pq−1, up to a constant multiple, the above estimates are consistent with
the estimates given in [2]2.

In order to ensure that our sequence convergences to a non-trivial solution,
we will impose the addition requirement that

∞∑

q=1

‖wq‖0 <
1

2
‖v0‖0 , (8)

for times t ∈ [−1/8, 1/8].
The principle new idea of this work is that in addition to the estimates

given above, we will keep track of sharper, time localized estimates. As a
consequence of these sharper estimates, it can be shown that for any given
time t ∈ (−1, 1) outside a prescribed set Ω of Hausdorff dimension strictly
less than 1, there exists a N = N(t) such that

‖wq‖0 +
1

λq
‖∂twq‖0 +

1

λq
‖wq‖1 ≤ λ−1/3+ε0

q (9)

‖pq − pq−1‖0 +
1

λq
‖∂t(pq − pq−1)‖0 +

1

λ2q
‖pq − pq−1‖2 ≤ λ−2/3+2ε0

q (10)

∥
∥
∥R̊q

∥
∥
∥
0
+

1

λq

∥
∥
∥R̊q

∥
∥
∥
1
≤ λ

−2/3+2ε0
q+1 , 3 (11)

for every q ≥ N .

2In [2] the estimates corresponding to (5)-(7) are written in terms of a sequence of

parameters δq which in the context of the present paper are defined to be δq := λ
−2/5+2ε0
q

(cf. Section 3 and Section 6).
3Here and throughout the paper we suppress the dependence on the time variable t.
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0.2. The main iteration proposition and the proof of Theorem 0.1.

Proposition 0.2. For every small ε0 > 0, there exists an α > 1, d < 1
and a sequence of parameters λ0, λ1, . . . satisfying 1/2λα

q

0 < λq < 2λα
q

0 such

that the following holds. A sequence of triples (vq, pq, R̊q) can be constructed
with temporal support confined to [−1/2, 1/2] solving (4) and satisfying the
estimates (5-8). Moreover, for any δ > 0, there exists an integer M such
that if ΞM denotes the set of times t such that there exists a q ≥M satisfying
either

‖wq‖0 +
1

λq
‖wq‖1 > λ−1/3+ε0

q , or

‖pq − pq−1‖0 +
1

λq
‖pq − pq−1‖1 > λ−

2/3+2ε0
q ,

(12)

then there exists a cover of ΞM consisting of a sequence of balls of radius ri
such that ∑

rdi < δ. (13)

Proof of Theorem 0.1. Fix ε0 = ε/2 and let (vq, pq, R̊q) be a sequence as in
Proposition 0.2. It follows then easily that (vq, pq) converge uniformly to a
pair of continuous functions (v, p) satisfying (1), having compact temporal
support. Moreover, by interpolating the inequalities (5) and (6) we obtain

that vq converges in C1/5−ε and pq in C2/5−2ε.
In order to prove (ii) we first fix δ > 0 and let M and ΞM be as in

Proposition 0.2. Hence by assumption if t /∈ ΞM

‖wq‖0 +
1

λq
‖wq‖1 ≤ λ−1/3+ε0

q

‖pq − pq−1‖0 +
1

λq
‖pq − pq−1‖1 ≤ λ−

2/3+2ε0
q ,

(14)

for all q ≥ M . Thus interpolating the inequalities above we obtain that
v − vM is bounded in C1/3−ε and p − pM in C2/3−2ε. By (5) and (6), the
pair (vM , pM ) are C1 bounded and thus it follows that v and p are bounded

in C1/3−ε and C2/3−2ε respectively. Letting δ tend to zero we obtain our
claim. �

0.3. Plan of the paper. After recalling in Section 1 some preliminary
notation from the paper [9], in Section 2 we give the precise definition of the

sequence of triples (vq, pq, R̊q). In Section 3 we list a number of inequalities
that we will require on the various parameters of our scheme. The Sections
4 and 5 will focus on estimating, respectively, wq+1 = vq+1 − vq, and R̊q+1.
These estimates are then collected in Section 6 where Proposition 0.2 will
be finally proved. Throughout the entire article we will rely heavily on the
arguments of [2] – in some sense the scheme presented here is a simple variant
of that given in [2] – as such the present paper is intentionally structured in
a similar manner to [2] in order to aide comparison.
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1. Preliminaries

Throughout this paper we denote the 3× 3 identity matrix by Id. In this
section we state a number of results found in [9] which are fundamental to
the present scheme as well its predecessors [9, 7, 2].

1.1. Geometric preliminaries. The following two results will form the
cornerstone in which to construct the highly oscillating flows required by
our scheme.

Proposition 1.1 (Beltrami flows). Let λ̄ ≥ 1 and let Ak ∈ R
3 be such that

Ak · k = 0, |Ak| = 1√
2
, A−k = Ak

for k ∈ Z
3 with |k| = λ̄. Furthermore, let

Bk = Ak + i
k

|k| ×Ak ∈ C
3.

For any choice of ak ∈ C with ak = a−k the vector field

W (ξ) =
∑

|k|=λ̄

akBke
ik·ξ (15)

is real-valued, divergence-free and satisfies

div (W ⊗W ) = ∇|W |2
2

. (16)

Furthermore

〈W ⊗W 〉 =
 

T3

W ⊗W dξ =
1

2

∑

|k|=λ̄

|ak|2
(

Id− k

|k| ⊗
k

|k|

)

. (17)

Lemma 1.2 (Geometric Lemma). For every N ∈ N we can choose r0 > 0
and λ̄ > 1 with the following property. There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z
3 : |k| = λ̄} j ∈ {1, . . . , N}

and smooth positive functions

γ
(j)
k ∈ C∞ (Br0(Id)) j ∈ {1, . . . , N}, k ∈ Λj ,

4

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

4Here Br0(Id) denotes the ball around Id of radius r0 under the usual matrix operator
norm |A| := max|v|=1 |Av|.
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(b) For each R ∈ Br0(Id) we have the identity

R =
1

2

∑

k∈Λj

(

γ
(j)
k (R)

)2
(

Id− k

|k| ⊗
k

|k|

)

∀R ∈ Br0(Id) . (18)

1.2. The operator R. The following operator will be used in order to deal
the the Reynolds Stresses arising from our iteration scheme.

Definition 1.3. Let v ∈ C∞(T3,R3) be a smooth vector field. We then
define Rv to be the matrix-valued periodic function

Rv :=
1

4

(
∇Pu+ (∇Pu)T

)
+

3

4

(
∇u+ (∇u)T

)
− 1

2
(div u)Id,

where u ∈ C∞(T3,R3) is the solution of

∆u = v −
 

T3

v in T
3

with
ffl

T3 u = 0 and P is the Leray projection onto divergence-free fields with
zero average.

Lemma 1.4 (R = div−1). For any v ∈ C∞(T3,R3) we have

(a) Rv(x) is a symmetric trace-free matrix for each x ∈ T
3;

(b) divRv = v −
ffl

T3 v.

2. The construction of the triples (vq, pq, R̊q)

2.1. The initial triple (v0, p0, R̊0). Let χ0 be a smooth non-negative func-
tion, compactly supported on the interval [−1/4, 1/4], bounded above by 1
and identically equal to 1 on [−1/8, 1/8]. We now set our initial velocity to
be the divergence-free vector field

v0(t, x) :=
1

2
λ
− 1

5
+ε0

0 χ0(t)(cos(λ0x3), sin(λ0x3), 0),

where here we use the notation x = (x1, x2, x3). The initial pressure p0 is
then defined to be identically zero. Finally if we set

R̊0 =
1

2
λ
− 6

5
+ε0

0 χ′
0(t)





0 0 sin(λ0x3)
0 0 − cos(λ0x3)

sin(λ0x3) − cos(λ0x3) 0



 ,

we obtain

∂tv0 + div (v0 ⊗ v0) +∇p0 = div R̊0.

Hence the triple (v0, p0,R0) is a solution to the Euler-Reynolds system (4).
Furthermore, it follows immediately that

∥
∥
∥R̊0

∥
∥
∥
0
+

1

λ0

∥
∥
∥R̊0

∥
∥
∥
1
≤ Cλ

−6/5+ǫ0
0 .

Thus if λ0 is sufficiently large we obtain (5-7) for q = 0.



8 TRISTAN BUCKMASTER

Remark. The choice of initial triple (v0, p0, R̊0) is not of any great impor-
tance: any choice satisfying the conditions set out in Section 0.1 and is such

that |v0| ≈ λ
−1/5+ε0
0 for times t ∈ [−1/8, 1/8] should suffice.

2.2. The inductive step. The procedure of constructing (vq+1, pq+1, R̊q+1)

in terms of (vq, pq, R̊q) follows in the same spirit as that of the scheme
outlined in [2] with a few minor modifications in order to satisfy the specific
requirements of Proposition 0.2.

We will assume that λ0 is chosen large enough such that

∑

j<q

λ
2/3
j ≤ λ

2/3
q ,

∞∑

j=0

λ
−1/5+ε0
j ≤ 1 and

∞∑

j=1

λ
−1/5+ε0
j <

λ
−1/5+ε0
0

4
. (19)

Notice as a direct consequence (8) follows from (5) and the definition of v0.
We fix a symmetric non-negative convolution kernel ψ with support con-

fined to [−1, 1].

With a slight abuse of notation, we will use (v, p, R̊) for (vq, pq, R̊q) and

(v1, p1, R̊1) for (vq+1, pq+1, R̊q+1).
As was done in [2], we discretize time into intervals of size µ−1. The

parameter µ will be chosen explicitly as

µ = µq+1 = λ
1/2(1+α)(−1/5+ε0+1)
q .

We will see in Section 6 that our choice of µ is consistent with the choice
made in [2].

The choice of cut-off functions χ = χ(q+1) used in this article will differ
slightly to that described in [2]. Specifically, we define χ to be a smooth
function such that for a small parameter ε1 > 0 (to be chosen later) χ
satisfies the following conditions:

• The support of χ is contained in

(

−1
2 −

λ
−ε1
q+1

4 , 12 +
λ
−ε1
q+1

4

)

.

• In the range

(

−1
2 +

λ
−ε1
q+1

4 , 12 −
λ
−ε1
q+1

4

)

we have χ ≡ 1.

• The sequence {χ2(x− l)}l∈Z forms a partition of unity of R, i.e.
∑

l∈Z
χ2(x− l) = 1.

• For N ≥ 0 we have the estimates
∣
∣∂Nx χ

∣
∣ ≤ CλNε1

q+1 ,

where the constant C depends only on N – in particular it is inde-
pendent of q.

Having defined χ, we adopt the notation χl(t) := χ(µt − l). The fun-
damental difference to choice of χ in [2] is the extra factor λ−ε1

q+1 appearing
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in the definition. A consequence of this modification is that the Lebesgue
measure of the set

∞⋂

q=1

∞⋃

q′=q

⋃

l

support(χ′
q′,l)

is zero. We will see this will provide us with a key ingredient in order to
prove a.e. in time C

1/3−ε convergence of the sequence vq.
For each l define the amplitude function

ρl = 2r−1
0

∥
∥
∥R̊(·, lµ−1)

∥
∥
∥
0
.

The function ρl will play a similar role to the ρl found in [2]: the compar-
atively simpler definition above reflects the fact that we are only interested
in correcting for the Reynolds error and are not attempting to construct a
solution to Euler with a prescribed energy as was done in [2].

Keeping in mind the new choices of ρl and χl, the construction of (vq+1, pq+1, R̊q+1)
proceeds in exactly the same manner as that described in [2], with the minor
exception that the mollification parameter ℓ will be chosen explicitly to be

ℓ = λ−1+ε2
q+1 ,

where ε2 > 0 is a small parameter to be chosen later.
For completeness we recall the remaining steps required to construct the

triple (vq+1, pq+1, R̊q+1).
Having set

Rl(x) := ρlId− R̊(x, lµ−1)

and vℓ = v ∗ ψℓ, we define Rℓ,l to be the unique solution to the following
transport equation







∂tRℓ,l + vℓ · ∇Rℓ,l = 0

Rℓ,l(
l
µ , ·) = Rl ∗ ψℓ .

For every integer l ∈ [−µ, µ], we let Φl : R
3×(−1, 1) → R

3 be the solution
of







∂tΦl + vℓ · ∇Φl = 0

Φl(x, lµ
−1) = x.

Applying Lemma 1.2 with N = 2, we denote by Λe and Λo the corre-
sponding families of frequencies in Z

3 and set Λ := Λo + Λe. For each k ∈ Λ
and each l ∈ Z ∩ [0, µ] we then define

akl(x, t) :=
√
ρlγk

(
Rℓ,l(x, t)

ρl

)

,

wkl(x, t) := akl(x, t)Bke
iλq+1k·Φl(x,t).
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The perturbation w is then defined as the sum of a “principal part” and a
“corrector”. The “principal part” being the map

wo(x, t) :=
∑

l odd,k∈Λo

χl(t)wkl(x, t) +
∑

l even,k∈Λe

χl(t)wkl(x, t) .

The “corrector” wc is then defined in such a way that the sum w = wo +wc

is divergence free:

wc =
∑

kl

χl

( i

λq+1
∇akl − akl(DΦl − Id)k

)

× k ×Bk

|k|2 eiλq+1k·Φl.

The new pressure is defined as

p1 = p− |wo|2
2

− 1

3
|wc|2 −

2

3
〈wo, wc〉 −

2

3
〈v − vℓ, w〉 .

and finally we set R̊1 = R0 +R1 +R2 +R3 +R4 +R5, where

R0 = R (∂tw + vℓ · ∇w + w · ∇vℓ) (20)

R1 = Rdiv
(

wo ⊗ wo −
∑

l

χ2
lRℓ,l − |wo|2

2 Id
)

(21)

R2 = wo ⊗ wc + wc ⊗ wo +wc ⊗ wc − |wc|2+2〈wo,wc〉
3 Id (22)

R3 = w ⊗ (v − vℓ) + (v − vℓ)⊗ w − 2〈(v−vℓ),w〉
3 Id (23)

R4 = R̊− R̊ ∗ ψℓ (24)

R5 =
∑

l

χ2
l (R̊ℓ,l + R̊ ∗ ψℓ) . (25)

2.3. Compact support in time. By construction it follows that if the
triple (v, p, R̊) is supported in the time interval [T, T ′] then (v1, p1, R̊1) is

supported in the time interval [T−µ−1, T ′+µ−1]. Therefore since (v0, p0, R̊0)
is supported in the time interval [−1/4, 1/4] it follows by induction that the

triple (vq, pq, R̊q) is supported in the time interval

[−1/4 −
q−1
∑

j=0

λ
−1/2(1+α)(−1/5+ε0+1)
j , 1/4 +

q−1
∑

j=0

λ
1/2(1+α)(−1/5+ε0+1)
j ] ⊂ [−1/2, 1/2],

assuming λ0 is chosen to be appropriately large depending on the choice of
α and ε0.

3. Ordering of parameters

In order to better aid comparison to arguments of [2], we introduce a
sequence of strictly decreasing parameters δq < 1. In Section 6 we will
provide an explicit definition of δq, but for now we restrict ourselves to
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specifying a number of inequalities that δq will need to satisfy. Analogously
to [2] we will assume the following estimates

‖vq‖1 ≤ δ
1/2
q λq (26)

‖pq‖2 ≤ δqλ
2
q (27)

∥
∥
∥R̊q

∥
∥
∥
0
+

1

λq

∥
∥
∥R̊q

∥
∥
∥
1
≤ 1

C 0
δq+1 (28)

∥
∥
∥∂t + v · ∇R̊q

∥
∥
∥
0
≤ δq+1δ

1/2
q λq, (29)

where C0 > 1 is a large number to be specified in the next section.
Furthermore we will assume in addition that the following parameter

inequalities are satisfied

∑

j<q

δjλj ≤ δqλq,
δ
1/2
q λqℓ

δ
1/2
q+1

≤ 1,

δ
1/2
q λq
µ

+
1

ℓλq+1
≤ λ−β

q+1 and
1

λq+1
≤
δ
1/2
q+1

µ
.

(30)

The sequence δq will be applied in the context of proving 1/5 − ε con-
vergence of the velocities vq; however note that unlike the case in [2], the

sequence does not appear explicitly in the definition of the triples (vq, pq, R̊q).
In order to prove a.e. time 1/3 − ε convergence, we will require localized

estimates (in time). To this aim we fix a time t0 ∈ (−1, 1) and set lq to be
the unique integer such that µqt0 ∈ [−1/2 + lq, 1/2 + lq). We now introduce
a new sequence of strictly decreasing parameters δq,t0 ≤ δq such that for a
given time t satisfying |µq+1t− lq+1| < 1 we have the following estimates

‖vq‖1 ≤ δ
1/2
q,t0λq (31)

‖pq‖2 ≤ δq,t0λ
2
q (32)

∥
∥
∥R̊q

∥
∥
∥
0
+

1

λq

∥
∥
∥R̊q

∥
∥
∥
1
≤ 1

C0
δq+1,t0 (33)

∥
∥
∥∂t + v · ∇R̊q

∥
∥
∥
0
≤ δq+1,t0δ

1/2
q,t0λq. (34)

Analogously to (30) we assume the following inequalities are satisfied

∑

j<q

δj,t0λj ≤ δq,t0λq,
δ
1/2
q,t0
λqℓ

δ
1/2
q+1,t0

≤ 1, and
δ
1/2
q,t0
λq

µ
+

1

ℓλq+1
≤ λ−β

q+1. (35)

The last inequality being a trivial consequence of (30) and the inequality
δq,t0 ≤ δq. Observe that we do not assume a condition akin to the last
inequality of (30). This remark is worth keeping in mind as we will apply
the arguments of [2] extensively, where such a condition was present. Luckily,
this condition is only really required at one specific point in the paper: the
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estimation of ∥
∥
∥∂tR̊1 + vq · ∇R̊1

∥
∥
∥
0
.

This condition was also used in a few isolated cases in [2] in order to simplify
a number of terms arising from estimates, however this was primarily done
for aesthetic reasons.

4. Estimates on the perturbation

In order to bound the perturbation, we apply nearly identical arguments
used in Section 3 of [2].

We recall the following notation from [2]

φkl(x, t) := eiλq+1k·[Φl(x,t)−x],

Lkl := aklBk +
( i

λq+1
∇akl − akl(DΦl − Id)k

)

× k ×Bk

|k|2 .

The perturbation w can then be written as

w =
∑

kl

χl Lkl φkl e
iλq+1k·x =

∑

kl

χl Lkl e
iλq+1k·Φl .

For reference we note that as a consequence of (5), (6), (19) and (32) we
have

‖vq‖0 ≤ 1 (36)

‖pq‖1 ≤ Cδq,t0λq (37)

where the last inequality follows by interpolation.
We also recall that as a consequence of simple convolution inequalities

together with the inequalities (31) we have for a fixed t0, N ≥ 1 and times
t satisfying |µq+1t− lq+1| < 1

‖vℓ‖N ≤ δ
1/2
q,toλqℓ

−N+1. (38)

With this notation we now present a minor variant of Lemma 3.1 from
[2].

Lemma 4.1. Fix a time t0 ∈ (−1, 1) and let lq+1 be as before, i.e. the
unique integer such that t0 ∈ [−1/2 + lq+1, 1/2 + lq+1) Assuming the series
of inequalities listed in Section 3 hold then we have the following estimates.
For t such that |µt− l| < 1 where l ∈ {lq+1 − 1, lq+1, lq+1 + 1} we have

‖DΦl‖0 ≤ C (39)

‖DΦl − Id‖0 ≤ C
δ
1/2
q,t0λq

µ
(40)

‖DΦl‖N ≤ C
δ
1/2
q,t0λq

µℓN
, N ≥ 1 (41)
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Moreover,

‖akl‖0 + ‖Lkl‖0 ≤ Cδ
1/2
q+1,t0

(42)

‖akl‖N ≤ Cδ
1/2
q+1,t0

λqℓ
1−N , N ≥ 1 (43)

‖Lkl‖N ≤ Cδ
1/2
q+1,t0

ℓ−N , N ≥ 1 (44)

‖φkl‖N ≤ Cλq+1

δ
1/2
q,t0λq

µℓN−1
+ C

(

δ
1/2
q,t0λqλq+1

µ

)N

≤ Cλ
N(1−β)
q+1 N ≥ 1. (45)

Consequently, for any N ≥ 0

‖wc‖N ≤ Cδ
1/2
q+1,t0

(

λq
λq+1

+
δ
1/2
q,t0λq

µ

)

λNq+1 (46)

≤ Cδ
1/2
q+1

δ
1/2
q λq
µ

λNq+1, (47)

‖wo‖N ≤ Cδ
1/2
q+1,t0

λNq+1 (48)

≤ Cδ
1/2
q+1λ

N
q+1. (49)

The constants appearing in the above estimates depend only on N and C0. In
particular for a fixed N , the constants appearing in (42)-(44) and (46)-(49)
can be made arbitrarily small by taking C0 to be sufficiently large. Further-
more, the weaker estimates (47) and (49) hold uniformly in time.

The proof of the above lemma follows from essentially exactly the same
arguments to those given in the proof of Lemma 3.1 from [2] – making use
of our new sequence of parameters δq,t0 . The only minor point of departure

from [2] is the appearance of the term
λq

λq+1
in (46). From the definition of

wc we have

‖wc‖N ≤C
∑

kl

χl

(
1

λq+1
‖akl‖N+1 + ‖akl‖0‖DΦl − Id‖N + ‖akl‖N‖DΦl − Id‖0

)

+ C‖wc‖0
∑

l

χl

(
λNq+1‖DΦl‖N0 + λq+1‖DΦl‖N−1

)
.

Hence applying (39)-(43) and applying the inequalities from Section 3 we
obtain (46).

We now present a variant of Lemma 3.2 from [2]. We recall from [2] the
notation for the material derivative: Dt := ∂t + vℓ · ∇.
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Lemma 4.2. Under the assumptions of Lemma 4.1 we have

‖Dtvℓ‖N ≤ Cδq,t0λq(1 + λqℓ
1−N ) + Cδq+1,t0λqℓ

−N , (50)

≤ Cδq,t0λqℓ
−N (51)

‖DtLkl‖N ≤ Cδ
1/2
q+1,t0

δ
1/2
q,t0λqℓ

−N , (52)

‖D2
tLkl‖N ≤ Cδ

1/2
q+1,t0

λqℓ
−N (δq,t0λq + δq+1,t0ℓ

−1) , (53)

≤ Cδ
1/2
q+1,t0

δq,t0λqℓ
−N−1 (54)

Consequently for t in the range |tµ− lq+1| ≤ 1/2(1− λ−ε1
q+1) we have

‖Dtwc‖N ≤ Cδ
1/2
q+1,t0

δ
1/2
q,t0λqλ

N
q+1 , (55)

‖Dtwo‖N ≡ 0 . (56)

Moreover we have the following estimates which are valid uniformly in time

‖Dtwc‖N ≤ Cδ
1/2
q+1δ

1/2
q λqλ

N+ε1
q+1 , (57)

‖Dtwo‖N ≤ Cδ
1/2
q+1µλ

N+ε1
q+1 . (58)

Again, we note that the constants C depend only on our choice of C0: in
particular, the constants appearing in (52)-(58) can be made arbitrarily small
by taking C0 sufficiently large.

Proof. First note that (52), (57) and (58) follow by exactly the same ar-
guments as those given in Lemma 3.2 of [2]. However in contrast to [2],
time derivatives falling on χl for some l pick up an additional factor of λε1q+1,

which explains this additional factor appearing in (57) and (58).
In order to prove (51), we note that by the arguments of [2] we obtain

that

‖Dtvℓ‖N ≤ ‖∇p ∗ ψℓ‖N + ‖div R̊ ∗ ψℓ‖N + Cλ2qℓ
1−Nδq,t0

Then from the estimates on p, R̊ together with standard convolution esti-
mates we obtain (50).

We now consider the estimate (53).

D2
tLkl =

(

− i

λq+1
(DtDvℓ)

T∇akl +
i

λq+1
DvTℓ Dv

T
ℓ ∇akl+

− aklDΦlDvℓDvℓk + aklDΦlDtDvℓk
)

× k ×Bk

|k|2 .

Note that DtDvℓ = DDtvℓ −DvℓDvℓ, so that

‖DtDvℓ‖N ≤ ‖Dtvℓ‖N+1 + C‖Dvℓ‖N‖Dvℓ‖0
≤ C(δq,t0λ

2
qℓ

−N + δq+1,t0λqℓ
−N−1) (1 + λqℓ)

≤ Cδq,t0λ
2
qℓ

−N + Cδq+1,t0λqℓ
−N−1.
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Hence utilizing the estimates in Lemma 4.1 we obtain

‖D2
tLkl‖N ≤ Cδ

1/2
q+1,t0

λqℓ
−N

(

δq,t0λq +
δq+1,t0

ℓ

)(

1 +
λq
λq+1

+
δ
1/2
q,t0λq

µ

)

· (1 + (λqℓ)
3)

≤ Cδ
1/2
q+1,t0

λqℓ
−N (δq,t0λq + δq+1,t0ℓ

−1).

Thus we obtain (53). The estimate (55) follows also as a trivial consequence.
�

We note in passing that keeping track of the second derivative of the
pressure is critical in obtaining the sharper estimates (50) and (53).

5. Estimates on the Reynolds stress

In this section we describe the estimates on Reynolds stress which follow
by applying the arguments of Section 5 of [2] to the present scheme.

Let ǫ > 0 be such that ε1 ≤ ǫ/2. Then by applying nearly identical
arguments to that of Proposition 5.1 of [2] we obtain the following two
estimates:

‖R̊1‖0 +
1

λq+1
‖R̊1‖1 +

1

µ
‖DtR̊1‖0 ≤

C

(

δ
1/2
q+1µ

λ1−ǫ
q+1

+
δq+1δ

1/2
q λqλ

ǫ
q+1

µ
+ δ

1/2
q+1δ

1/2
q λqℓ

)

, (59)

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤

Cδ
1/2
q+1λq+1

(

δ
1/2
q+1µ

λ1−ǫ
q+1

+
δq+1δ

1/2
q λqλ

ǫ
q+1

µ
+ δ

1/2
q+1δ

1/2
q λqℓ

)

. (60)

The careful reader will note that unlike [2], no term of the type

δ
1/2
q+1δqλq

λ1−ε
q+1µℓ

, (61)

appears within the brackets of the right hand side of (59) and (60). This
is related to the fact that in [2] the authors did not keep track of second
derivatives of the pressure. We come back to this point at the end of this
section.

A second point of difference to [2] is that in the present scheme derivatives
falling on χl pick up an extra factor of λε1q+1. However as we assumed ε1 ≤ ǫ/2,

we may simply apply the arguments of Proposition 5.1 of [2] with ǫ replaced
with ǫ/2 in order to absorb this extra error.

Localizing in time by fixing a time t0, we now consider the case that t
lies in the range |tµ− lq+1| ≤ 1/2 − λ−ε1

q+1 where as before lq+1 is the unique

integer such that µt0 ∈ [−1/2+ lq+1, 1/2+ lq+1). The following estimates will
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be in terms our new sequence of parameters δq,t0 . Again, the arguments
will be a minor variation to those found in Proposition 5.1 of [2], the key
differences being:

(A) Since for all l we have χ′
l is identically zero in this range, no positive

powers of µ will appear as a consequence of differentiating in time.
(B) As previously mentioned in Section 3, in contrast to the case in [2]

we do not have an estimate of the type

1

λq+1
≤
δ
1/2
q+1,t0

µ
(62)

at our disposal.
(C) In many of the material derivative estimates in [2] the estimate

δ
1/2
q λq ≤ µ was used in order to simplify terms: we will avoid em-
ploying such an estimate, although in its place we will often use the

estimate δ
1/2
q,t0λq ≤ δ

1/2
q+1,t0

λq+1,t0 .

Proposition 5.1. Fix t in the range |tµ− lq+1| < 1/2(1 − λ−ε1
q+1). For any

choice of small positive numbers ǫ, β there is a constant C such that, if δq,
δq+1, µ, λq+1 and ℓ satisfy the conditions in Section 3, then we have

‖R0‖0 +
1

λq+1
‖R0‖1 +

1

δ
1/2
q+1,t0

λq+1

‖DtR
0‖0 ≤ C

δ
1/2
q+1,t0

δ
1/2
q,t0λq

λ1−ǫ
q+1

(63)

‖R1‖0 +
1

λq+1
‖R1‖1 +

1

δ
1/2
q+1,t0

λq+1

‖DtR
1‖0 ≤ C

δq+1,t0δ
1/2
q,t0λqλ

ǫ
q+1

µ
+

C
δ
1/2
q+1,t0

δ
1/2
q,t0λq

λ1−ǫ
q+1

(64)

‖R2‖0 +
1

λq+1
‖R2‖1 +

1

δ
1/2
q+1,t0

λq+1

‖DtR
2‖0 ≤ C

δq+1,t0δ
1/2
q,t0λqλ

ǫ
q+1

µ
+

C
δ
1/2
q+1,t0

δ
1/2
q,t0λq

λ1−ǫ
q+1

(65)

‖R3‖0 +
1

λq+1
‖R3‖1 +

1

δ
1/2
q+1,t0

λq+1

‖DtR
3‖0 ≤ Cδ

1/2
q+1,t0

δ
1/2
q,t0λqℓ (66)

‖R4‖0 +
1

λq+1
‖R4‖1 +

1

δ
1/2
q+1,t0

λq+1

‖DtR
4‖0 ≤ Cδ

1/2
q+1,t0

δ
1/2
q,t0λqℓ (67)

‖R5‖0 +
1

λq+1
‖R5‖1 +

1

δ
1/2
q+1,t0

λq+1

‖DtR
5‖0 ≤ C

δq+1,t0δ
1/2
q,t0λq

µ
+
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C
δ
1/2
q+1,t0

δ
1/2
q,t0λq

λ1−ǫ
q+1

. (68)

Thus

‖R̊1‖0 +
1

λq+1
‖R̊1‖1 +

1

δ
1/2
q+1,t0

λq
‖DtR̊0‖0 ≤

C

(

δ
1/2
q+1,t0

δ
1/2
q,t0λq

λ1−ǫ
q+1

+
δq+1,t0δ

1/2
q,t0λqλ

ǫ
q+1

µ
+ δ

1/2
q+1,t0

δ
1/2
q,t0λqℓ

)

, (69)

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤

Cδ
1/2
q+1,t0

λq+1

(

δ
1/2
q+1,t0

δ
1/2
q,t0λq

λ1−ǫ
q+1

+
δq+1,t0δ

1/2
q,t0λqλ

ǫ
q+1

µ
+ δ

1/2
q+1,t0

δ
1/2
q,t0λqℓ

)

. (70)

Proof. Keeping in mind the observations (A), (B) and (C) above, the proof
of (65)-(68) follows by applying nearly identical arguments to that found in
Proposition 5.1 of [2]. The estimate (69) easily follows as a consequence of
(63)-(68), and (70) follows from (69) together with the observation

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤ ‖DtR̊1‖0 + (‖v − vℓ‖0 + ‖w‖0) ‖R̊1‖1 .

Therefore we will restrict ourselves to proving the estimates (63) and (64).
For reasons of brevity, in what follows we adopt the abuse of notation l1 =
lq+1.

Estimates on R0. Recall that in [2] that a key ingredient to bounding R0

involved bounding the terms Ωkl such that

∂tw + vℓ · ∇w + w · ∇vℓ =
∑

kl

Ωkle
iλq+1k·x ,

that is

Ωkl :=
(
χ′
lLkl + χlDtLkl + χlLkl · ∇vℓ

)
eik·Φl .

and the terms Ω′
kl such that

Dt (∂tw + vℓ · ∇w + w · ∇vℓ) :=
∑

k

Ω′
kle

iλq+1k·x, (71)

that is

Ω′
kl :=

(

∂2t χlLkl + 2∂tχlDtLkl + χlD
2
tLkl+

+ ∂tχlLkl · ∇vℓ + χlDtLkl · ∇vℓ + χlLkl · ∇Dtvℓ − χlLkl · ∇vℓ · ∇vℓ
)

eik·Φl .

(72)
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Precisely, it was shown in [2] that

‖R0‖0 ≤
∑

kl

(

λε−1
q+1‖Ωkl‖0 + λ−N+ε

q+1 ‖Ωkl‖N + λ−N
q+1‖Ωkl‖N+ε

)

, (73)

‖R0‖1 ≤λq+1

∑

kl

(

λε−1
q+1‖Ωkl‖0 + λ−N+ε

q+1 ‖Ωkl‖N + λ−N
q+1‖Ωkl‖N+ε

)

+

∑

k

(

λε−1
q+1‖Ωkl‖1 + λ−N+ε

q+1 ‖Ωkl‖N+1 + λ−N
q+1‖Ωkl‖N+1+ε

)

(74)

and

‖DtR0‖0 ≤C
∑

kl

[‖Ω′
kl‖0

λ1−ε
q+1

+
‖Ω′

kl‖N
λN−ε
q+1

+
‖Ω′

kl‖N+ε

λNq+1

+C
‖Ωkl‖N+1+ε‖vℓ‖2+ε + ‖Ωkl‖3+ε‖vℓ‖N+ε

λNq+1

+C
‖Ωkl‖N+1‖vℓ‖2 + ‖Ωkl‖3‖vℓ‖N

λN−ε
q+1

+ C
‖Ωkl‖1‖vℓ‖1

λ2−ε
q+1

+C
‖Ωkl‖N+ε‖vℓ‖2+ε + ‖Ωkl‖2+ε‖vℓ‖N+ε

λN−1
q+1

+C
‖Ωkl‖N‖vℓ‖2 + ‖Ωkl‖2‖vℓ‖N

λN−1−ε
q+1

+C
‖Ωkl‖0‖vℓ‖1

λ1−ε
q+1

]

(75)

Observe that since we assumed |tµ− l1| < 1/2(1 − λ−ε1
q+1) we have that

Ωkl,Ω
′
kl ≡ 0 for all l 6= l1. Moreover

Ωkl1 := (DtLkl1 + Lkl1 · ∇vℓ) eik·Φl1 ,

and

Ωkl1 :=
(

D2
tLkl1 +DtLkl1 · ∇vℓ + Lkl1 · ∇Dtvℓ − Lkl1 · ∇vℓ · ∇vℓ

)

eik·Φl1 .

Applying Lemmas 4.1, Lemma 4.2, (38) and (35) we obtain

‖Ωkl1‖N ≤ Cδ
1/2
q+1,t0

δ
1/2
q,t0
λqℓ

−N ≤ Cδ
1/2
q+1,t0

δ
1/2
q,t0
λqλ

N(1−β)
q+1 . (76)

Similarly we obtain

‖Ω′
kl1‖N ≤ Cδ

1/2
q+1,t0

λqℓ
−N (δq,t0λq + δq+1,t0ℓ

−1)

≤ Cδq+1,t0δ
1/2
q,t0λqλq+1ℓ

−N

≤ Cδq+1,t0δ
1/2
q,t0λqλ

1+N(1−β)
q+1 . (77)

Hence choosing N large enough such that Nβ ≥ 3, then combining (73)-
(77) we obtain (63).

Estimates on R1. Recall that a key ingredient to the estimation of R1

involves estimating

fklk′l′ := χlχl′aklak′l′φklφk′l′
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and

Dt

(

∇fklk′l′ eiλq+1(k+k′)·x
)

e−iλq+1(k+k′)·x = Ω′′
klk′l′ .

Precisely it was shown in [2] that

‖R1‖0 ≤
∑

(k,l),(k′,l′)

k+k′ 6=0

(

λε−1
q+1‖fklk′l′‖1 + λ−N+ε

q+1 ‖fklk′l′‖N+1 + λ−N
q+1[fklk′l′ ]N+1+ε

)

‖R1‖1 ≤λq+1

∑

(k,l),(k′,l′)

k+k′ 6=0

(

λε−1
q+1‖fklk′l′‖1 + λ−N+ε

q+1 ‖fklk′l′‖N+1 + λ−N
q+1[fklk′l′ ]N+1+ε

)

+
∑

(k,l),(k′,l′)

k+k′ 6=0

(

λε−1
q+1‖fklk′l′‖2 + λ−N+1+ε

q+1 ‖fklk′l′‖N+2 + λ−N
q+1[fklk′l′ ]N+2+ε

)

and

‖DtR
1‖0 ≤

∑

(k,l),(k′,l′)

k+k′ 6=0

(

λε−1
q+1[Ω

′′
klk′l′ ]0 + λ−N+ε

q+1 [Ω′′
klk′l′ ]N + λ−N

q+1[Ω
′′
klk′l′ ]N+ε

)

+ C
‖fklk′l′‖N+2+ε‖vℓ‖2+ε + ‖fklk′l′‖4+ε‖vℓ‖N+ε

λNq+1

+ C
‖fklk′l′‖N+2‖vℓ‖2 + ‖fklk′l′‖4‖vℓ‖N

λN−ε
q+1

+ C
‖fklk′l′‖2‖vℓ‖1

λ2−ε
q+1

+ C
‖fklk′l′‖N+1+ε‖vℓ‖2+ε + ‖fklk′l′‖3+ε‖vℓ‖N+ε

λN−1
q+1

+ C
‖fklk′l′‖N+1‖vℓ‖2 + ‖fklk′l′‖3‖vℓ‖N

λN−1−ε
q+1

+ C
‖fklk′l′‖1‖vℓ‖1

λ1−ε
q+1

.

Again as a consequence of our assumption |tµ− l1| < 1/2(1 − λ−ε1
q+1) we

have that if either l 6= l1 or l′ 6= l1 then fklk′l′ ≡ 0 and Ω′′
klk′l′ ≡ 0. Moreover

we have

Ω′′
kl1k′l1 :=−

(
akl1Dv

T
ℓ ∇ak′l1 + ak′l1Dv

T
ℓ ∇akl1

)
φkl1φk′l1

− akl1ak′l1
(
DΦlDv

T
ℓ k +DΦl1Dv

T
ℓ k

′)φkl1φk′l1 .

Estimating fkl1k′l1 and Ω′′
kl1k′l1

we have from Lemma 4.1 and Lemma 4.2
for N ≥ 1

‖fkl1k′l1‖N ≤ Cδq+1ℓ
1−N

(

λq +
δ
1/2
q λqλq+1

µ

)

, (78)

and
∥
∥Ω′′

kl1k′l1

∥
∥
0
≤ Cδq+1δ

1/2
q,t0λq (λq + 1) ≤ Cδq+1δ

1/2
q,t0λ

2
q (79)

∥
∥Ω′′

kl1k′l1

∥
∥
N

≤ Cδq+1δ
1/2
q,t0λ

2
qλ

N(1−β)
q+1 , (80)

for N ≥ 1.
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Combining the above estimates and again selecting N such that Nβ ≥ 3
we obtain (64). �

We conclude this section by providing an explanation for the absence of
terms of the type (61) appearing within the brackets on the right hand side
of the inequalities (59) and (60). By carefully examining the arguments of
[2] one sees that the only point in which such a term arises is the estimation
of DtR0. More precisely the term arises from estimating

R
[
∑

kl

(
χlD

2
tLkl + χlLkl · ∇Dtvℓ

)
eiλq+1k·Φl

]

:=
∑

kl

R
[

Γkle
iλq+1k·Φl

]

which appears in the decomposition of DtR0 used in Proposition 5.1 of [2]
(cf. (71) and (72)). Applying Lemma (4.1), Lemma (4.2) together with the
inequalities δq,t0 ≤ δq and δq+1,t0 ≤ δq+1 we obtain

‖Γkl‖N ≤ Cδ
1/2
q+1λqℓ

−N (δqλq + δq+1ℓ
−1), (81)

whereas instead applying the weaker estimates of [2] one obtains the worse
estimate

‖Γkl‖N ≤ Cδ
1/2
q+1λqℓ

−N−1δq.

The improvement is directly related to the fact that in contrast to [2] we
keep track of spatial second derivative estimates of the pressure. Applying
Proposition E.1 (ii) from [2] together with (81) and (30) we obtain

∥
∥
∥
∥
∥

∑

kl

R
[

Γkle
iλq+1k·Φl

]
∥
∥
∥
∥
∥
0

≤ C
∑

kl

[

‖Γkl‖0
λ1−ε
q+1

+
‖Γkl‖N
λN−ε
q+1

+
‖Γkl‖N+ε

λNq+1

]

≤ C
δ
1/2
q+1λq(δqλq + δq+1ℓ

−1)

λ1−ε
q+1

≤ Cµ

(

δ
1/2
q+1µ

λ1−ε
q+1

+
δq+1δ

1/2
q λqλ

ǫ
q+1

µ

)

,

where we assume N is chosen such that Nβ ≥ 1.

6. Choice of the parameters and conclusion of the proof

We begin by noting that we have not imposed any upper bounds on the
choice of λ0 and thus we are free to choose λ0 to be as large as need be: in
what follows we will use this fact multiple times without further comment.

1/5− ε convergence. We now make the following parameter choices

α := 1 + ε0, λq = ⌊λαq

0 ⌋,

ǫ, ε2 :=
ε20
8
, ε1 :=

ε20
16
,

δq := λ−2/5+2ε0
q ,
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here ⌊a⌋ denotes the largest integer smaller than a.
It is worth noting that with the above choices, our definition of µ agrees

with the definition given in [2], i.e.

µ = δ
1/4
q δ

1/4
q+1λ

1/2
q λ

1/2
q+1.

Having made the above choices it is clear the inequalities (30) are satisfied.
Moreover assuming (26)-(29), it follows as a consequence of Lemma 4.1 that
(26) and (27) are satisfied with q replaced by q + 1. In order to show (28)
with q replaced with q + 1 we note that with our choices of parameters we
obtain from (59) that

∥
∥
∥R̊q

∥
∥
∥
0
+

1

λq

∥
∥
∥R̊q

∥
∥
∥
1
≤ C

δ
1/2
q+1µ

λ1−ε
q+1

= Cλ
−2/5+

6ε0
5

+
13ε20
8

+
ε30
8

q

≤ Cδq+2λ
−ε2

0
q .

Thus we obtain both (28), and by similar arguments in combination with
(69), also (29) with q replaced by q + 1. Since the inequalities (26)-(29)
hold for q = 0, we obtain by induction that the inequalities hold for q ∈ N.
The inequalities (5)-(8) then follow as a consequence of Lemma 4.1, Lemma
4.2 and Proposition (5.1). In particular, the estimates on pq − pq−1 follow
directly from the estimates on w, wo and wc; furthermore, one may derive
time derivative estimates on w, wo and wc from the simple decomposition
∂t = Dt − vℓ · ∇.

1/3− ε convergence. Let us define U (q) to be the set

U (q) =
⋃

l∈[−µq,µq]

[µ−1
q (l + 1/2 − λ−ε1

q ), µ−1
q (l + 1/2 + λ−ε1

q )],

i.e. a union of ∼ 2µq balls of radius λ−ε1
q µ−1

q and define

V (q) =
∞⋃

q′=q

U (q′).

In particular note that V (q) can be covered by a sequence of balls of radius
ri such that

∑

rdi ≤ 3

∞∑

q′=q

λ−dε1
q′ µ1−d

q′ . (82)

Thus assuming

d >
(1 + α)(−1

5 + ε0 + 1)

(1 + α)(−1
5 + ε0 + 1) + 2αε1

, (83)

it follows that the right hand side of (82) converges to zero as q tends to
infinity.
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From this point on we assume d < 1 is fixed, satisfying (83) – which we
note is possible due to the fact the right hand side of (83) is strictly less
than 1.

For any time t0 ∈
⋂

N V (N) we simply set δq,t0 = δq for all q.

Now suppose t0 /∈ V (N) for some integer N , furthermore assume N to be
the smallest such integer. We now make the following parameter choices

δq+1,t0 :=







λ
−2/5+2ε0
q+1 if q ≤ N

max

(

λ
− ε2

0
8

q δαq,t0 , λ
−2/3+2ε0
q+1

)

, if q > N

It can then be checked that the inequalities (35) are satisfied. Applying
Lemma 4.1, Corollary 4.2 and Proposition 5.1 iteratively we see that (31-
34) hold for all q ≥ N . In particular, in order to show (33) for q replaced
by q + 1 we note that by Proposition 5.1 we have for all times t satisfying
|tµq+1 − lq+1| < 1/2(1− λ−ε1

q+1)

‖R̊1‖0 +
1

λq+1
‖R̊1‖1 ≤ C

δ
1/2
q+1,t0

δ
1/2
q,t0λq

λ1−ǫ
q+1

︸ ︷︷ ︸

I

+C
δq+1,t0δ

1/2
q,t0λqλ

ǫ
q+1

µ
︸ ︷︷ ︸

II

. (84)

Notice that if |µq+2t− lq+2| < 1 then

|tµq+1 − lq+1| ≤
µq+1

µq+2
|µq+2t− lq+2|+

∣
∣
∣
∣

µq+1lq+2

µq+2
− lq+1

∣
∣
∣
∣

<
2µq+1

µq+2
+ |µq+1t0 − lq+1|

< 2λ−1/4ε0
q + 1/2 − λ−ε1

q+1

< 1/2(1− λ−ε1
q+1).

Thus (84) holds for times t in the range |µq+2t− lq+2| < 1.
Taking logarithms of I and II we obtain

ln I ≤
(

1 +
ε0
2

)

ln δq,t0 +

(
ε20
8

+
ε30
8

− ε0

)

lnλq + C (85)

and

ln II ≤
(
3

2
+ ε0

)

ln δq,t0 +

(
1

5
− 7ε0

5
− 3ε20

8
+O(ε30)

)

lnλq + C. (86)

Note by definition we have

ln δq+2,t ≥ (1 + ε0)
2 ln δq,t0 −

(
2ε20
8

+O(ε30)

)

lnλq. (87)
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Thus since δq,t0 ≥ λ
−2/3+2ε0
q , combining (85) and (87) we obtain

ln

(
I

δq+2,t

)

≤
(

−3ε0
2

− ε20

)

ln δq,t0 +

(
3ε20
8

− ε0 +O(ε30)

)

lnλq + C

≤
(

−ε
2
0

4
+O(ε30)

)

lnλq + C. (88)

Similarly, since δq,t0 ≤ λ
−2/5+2ε0
q , combining (86) and (87) we obtain

ln

(
II

δq+2,t

)

≤
(
1

2
− ε0 − ε20

)

ln δq,t0 +

(
1

5
− 7ε0

5
− ε20

8
+O(ε30)

)

lnλq + C

≤
(
−ε20 +O(ε30)

)
lnλq + C. (89)

Hence assuming ε0 is sufficiently small, from (88) and (89) we obtain (33)
for q replaced by q + 1.

Observe also that there exists an N ′ such that for all q ≥ N +N ′ we have

δq,t0 = λ−
2/3+2ε0

q ,

and hence the inequality (12) is never satisfied for q ≥ N +N ′. Thus

ΞN+N ′ ⊂ V N .

In particular N ′ can be chosen universally, independent of N . Fixing δ > 0
and choosing N such that V N can be covered by a sequence of balls of radius
ri satisfying ∑

rdi < δ,

we obtain that if we set M = N +N ′ then (13) is satisfied which concludes
the proof of Proposition 0.2.

Remark. For the sake of completeness we note that analogously to the esti-
mates (5)-(7), the estimates (9)-(11) follow as a consequence of Lemma 4.1,
Lemma 4.2 and Proposition (5.1) – here the set Ω can be taken explicitly to
be

Ω :=

∞⋂

q=1

V (q).
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[9] De Lellis, C., and Székelyhidi, Jr., L. Dissipative continuous Euler flows. To
appear in Inventiones (2013), 1–26.

[10] Duchon, J., and Robert, R. Inertial energy dissipation for weak solutions of in-
compressible Euler and Navier-Stokes equations. Nonlinearity 13, 1 (2000), 249–255.

[11] Eyink, G. L. Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier
analysis and local energy transfer. Phys. D 78, 3-4 (1994), 222–240.

[12] Eyink, G. L., and Sreenivasan, K. R. Onsager and the theory of hydrodynamic
turbulence. Rev. Modern Phys. 78, 1 (2006), 87–135.

[13] Frisch, U. Fully developed turbulence and intermittency. Annals of the New York
Academy of Sciences 357, 1 (1980), 359–367.

[14] Frisch, U. Turbulence. Cambridge University Press, Cambridge, 1995. The legacy
of A. N. Kolmogorov.
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