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Introduction

The theory of spectrahedra and their shadows is a fascinating and active

area of research. The interest in it was triggered by the development of

semidefinite programming towards the end of the last century.

Semidefinite programming is a generalization of linear programming. In

linear programming, one tries to optimize a linear function under linear con-

straints. So the set over which the function is optimized is a polyhedron. A

lot of optimization problems from the real world can be transformed into lin-

ear programming problems. So it is not surprising that linear programming

has been extensively studied since at least the second world war. There exist

efficient algorithms to solve such problems.

In semidefinite programming, the linear constraints are replaced by the

condition that a linear combination of some matrices is positive semidefinite.

The feasible sets that occur in this way are still convex, but not necessarily

polyhedral. They are called spectrahedra. Allowing for those more general

constraints of course broadens the area of application. Luckily, there are still

efficient algorithms to solve these more general optimization problems. This

is what makes semidefinite programming so interesting.

The development of semidefinite programming of course asks for a thor-

ough investigation of the underlying theoretical framework. One of the most

interesting open questions concerns the characterization of spectrahedra. It

might already be complicated to decide whether a given set is a polyhedron

in certain cases, but for spectrahedra it is much worse. Even for a two-

or three-dimensional explicitly given set it might be unclear whether it is a

spectrahedron or not.

There is groundbreaking work of Helton and Vinnikov on this question.

They introduce the notion of a rigidly convex set, and show that spectrahedra

are rigidly convex. Whether a set is rigidly convex is easier to decide in

general. The question whether a rigidly convex set is a spectrahedron is then

linked to the problem of writing certain polynomials as determinants of linear

matrix polynomials. This establishes a translation of the original geometric

question into an algebraic problem. In the two-dimensional case, Helton and
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Vinnikov solve this problem to the positive, and the classification of two-

dimensional spectrahedra can thus be considered as completed: spectrahedra

and rigidly convex sets are the same in the plane. In higher dimensions, the

classification of spectrahedra is still open. It can however be shown that the

strong algebraic result of Helton and Vinnikov does not carry over directly.

Also of interest are projections of spectrahedra, called spectrahedral shad-

ows. In contrast to polyhedra, such projections are not necessarily of the

same type again, i.e. they are not necessarily spectrahedra. Still they are

feasible for semidefinite programming. One simply has to optimize over the

original spectrahedron, which might involve some additional variables. The

only known necessary conditions for a set to be a spectrahedral shadow is

being convex and semi-algebraic. Whether these two conditions are also suf-

ficient is an open problem.

In this work we want to examine the above-mentioned questions in more

detail. In the first part we consider spectrahedra. We introduce the whole

framework and explain the most important results. The main focus will then

be on the algebraic part, i.e. on the problem of writing certain polynomials

as determinants of linear matrix polynomials. We show that this is most

often not possible in dimension three or higher. We explicitly construct

examples of such polynomials without determinantal representations. There

exist surprisingly simple examples.

We then examine whether some power of a polynomial admits a determi-

nantal representation. This is linked to the question of representing a mul-

tivariate Hermite matrix as a sum of squares of matrices: if some power of

the polynomial has a determinantal representation, then its Hermite matrix

is a sum of squares. This condition can for example be checked numerically

quite well, and thus yields new counterexamples.

Conversely, we try to construct a determinantal representation for a poly-

nomial, or some multiple, from a sums of squares decomposition of its Hermite

matrix. The method involves an extension of a graded morphism from a sub-

module of a free module to the whole module. Checking whether this can be

done amounts only to solving a system of linear equations. Note that there

are very few methods to explicitly construct determinantal representations

so far, in particular in dimension three or higher.

We then characterize polynomials of which some power has a determi-

nantal representation, in terms of a non-commutative algebra having a finite
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dimensional representation. We deduce that the desired representations ex-

ist for quadratic polynomials. The representations thereby emerge explicitly,

and we describe them up to unitary equivalence.

We finally show that each of the considered polynomials admits a rational

determinantal representation.

In the second part of this work we examine spectrahedral shadows. We

again first give a general introduction, including a unified account of the most

important results and concepts. We then focus on the so-called Lasserre

relaxation method. This method allows to construct a sequence of spec-

trahedral shadows that approximate a given set. An interesting question is

whether this approximation is exact. We show how a geometric property of

the original set prohibits this exactness: if the set has a non-exposed face,

then no Lasserre relaxation can be exact. The result can also be formu-

lated in a purely real-algebraic setup, talking only about sums of squares

representations of certain nonnegative polynomials.

We next deal with non-closed sets. We show how many such non-closed

sets can be realized as spectrahedral shadows: One can remove suitably

parametrized faces from a spectrahedral shadow and obtain a spectrahedral

shadow again. In particular, the interior of a spectrahedral shadow is a

spectrahedral shadow. Also the closure of a spectrahedral shadow turns out

to be a spectrahedral shadow again.

The results from this work are mostly already published. They appear

in Gouveia and Netzer [14], Netzer [37], Netzer, Plaumann and Schweighofer

[38], Netzer, Plaumann and Thom [39], Netzer and Sinn [40] and Netzer

and Thom [41]. I would like to thank all my coauthors for the pleasant

collaboration. Further I want to thank Alexander Prestel, Claus Scheiderer

and Konrad Schmüdgen for their constant support, that helped me a lot.
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Chapter 1

Definitions and Preliminaries

1.1 Definitions

A spectrahedron is a set defined by a linear matrix inequality. Formally, let

M0,M1, . . . ,Mn ∈ Herk(C) be complex hermitian matrices of size k. The

expression

M := M0 + x1M1 + · · ·+ xnMn

is called a (hermitian) linear matrix polynomial. Here, x = (x1, . . . , xn)

is a tuple of commuting variables. In the special case that all matrices

Mi ∈ Symk(R) are real symmetric matrices, we call the matrix polynomial a

symmetric linear matrix polynomial. We will in the following always assume

that matrix polynomials are hermitian, and state explicitly if we restrict our-

selves to symmetric ones. The size of a linear matrix polynomial is the size k

of its coefficient matrices. The number n of variables is called the dimension

of the matrix polynomial.

For a linear matrix polynomial M of dimension n we consider the set of

points from Rn where M is positive semidefinite:

S(M) := {a ∈ Rn | M(a) = M0 + a1M1 + · · ·+ anMn � 0} .

Such a set is called a spectrahedron. The name is justified in Ramana and

Goldmann [48] as follows: S(M) is defined via the spectrum of M (i.e. it

consists of all points at whichM has nonnegative spectrum), and the notion

generalizes that of a polyhedron. In fact if `1, . . . , `k ∈ R[x]1 are linear

13
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polynomials, consider

M =

 `1
. . .

`k


which is a symmetric linear matrix polynomial (with all matrices Mi diago-

nal). It is clear that

S(M) = {a ∈ Rn | `1(a) ≥ 0, . . . , `k(a) ≥ 0} .

So each polyhedron is a spectrahedron. It turns out that spectrahedra share

some interesting properties with polyhedra, but on the other hand enlarge

that class greatly. Whereas polyhedra are well examined objects, the the-

ory of spectrahedra is not widely developed. For example, there is still no

satisfying procedure to check whether a set is a spectrahedron, apart from

dimension two.

Note that one can also define spectrahedra to be intersections of the cone

of positive semidefinite matrices with an affine linear subspace. This is clear

when considering M1, . . . ,Mn as a spanning system of a subspace and M0 as

an affine translation vector. In the same way polyhedra can be seen as affine

linear intersections of the positive orthant in some Rk.

Here is a first explicit example.

Example 1.1.1. Let n = 2 and consider

M0 =

(
1 0

0 1

)
,M1 =

(
1 0

0 −1

)
,M2 =

(
0 1

1 0

)
.

Then

M = M0 + x1M1 + x2M2 =

(
1 + x1 x2

x2 1− x1

)
,

and one checks that

S(M) =
{

(a1, a2) ∈ R2 | a2
1 + a2

2 ≤ 1
}

is the unit disk.
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1.2 Motivation

Spectrahedra form a most interesting class of convex sets, somewhere between

”easy” and ”very complicated”. The class of spectrahedra contains the well-

studied and important class of polyhedra. It contains however many more

convex sets, as we will see in the further process. Still, spectrahedra are well

manageable due to their explicit description via matrix polynomials.

One of the main interests in spectrahedra stems from optimization theory.

The problem to find the minimum of an affine linear function on a polyhedron

(and possibly the points where this minimum is attained) is known as linear

programming. Linear programming turns out to be extremely useful for many

kinds of problems. Furthermore, there exists a well developed theory of linear

programming, including efficient algorithms (such as interior point methods

and the simplex algorithm) and a good duality theory. The existing literature

on linear programming is extensive; for a detailed survey see for example

Murty [34].

Replacing polyhedra by spectrahedra in the optimization problem clearly

broadens the area of application. Many interesting problems can indeed by

understood as optimization problems over spectrahedra, but not over poly-

hedra. Examples come from polynomial optimization, combinatorial opti-

mization, non-convex optimization and control theory. Optimization over

spectrahedra is called semidefinite programming. So semidefinite program-

ming is a generalization of linear programming. Luckily, there exists a good

duality theory and efficient algorithms for semidefinite programming as well.

For more details on semidefinite programming see for example Ben-Tal and

Nemirovski [6], Nemirovski [35], Nesterov and Nemirovski [36], Todd [58],

Vandenberghe and Boyd [59] and Wolkowicz, Saigal and Vandenberghe [61].

As already mentioned, there is still no complete characterization of spec-

trahedra. From the practical viewpoint of optimization, an easy character-

ization is however most desirable. Also algorithmic problems, like how to

find a representing matrix polynomial, are of great interest, and have not

been addressed extensively. So the research on spectrahedra is not only at-

tractive from a theoretical point of view, but also well motivated in terms of

applications.

We finish this section with an interesting application of semidefinite pro-

gramming. The approach is due to Lovász [30], and our explanation is taken
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from Barvinok [4], Section IV.11.

Example 1.2.1. Let G = (V,E) be an undirected graph on k vertices V =

{1, . . . , k}, containing no loops or multiple edges. A clique of G is a subset

W ⊆ V such that any two distinct elements from W are connected by an

edge. The clique number ω(G) of G is the largest cardinality of a clique.

A coloring of G is an assignment of a color to each vertex of G, such that

two vertices that are connected by an edge never have the same color. The

chromatic number χ(G) of G is the smallest number of colors needed for a

coloring. It is easy to see that

ω(G) ≤ χ(G)

holds for all graphs. It is known that finding ω(G) and χ(G) is computa-

tionally hard. What can be done with a semidefinite program however, is

computing a number ϑ(G) that always lies between ω(G) and χ(G):

ω(G) ≤ ϑ(G) ≤ χ(G).

This number ϑ(G) is called Lovász’s theta number of G, and can be defined

as the optimal value of the following optimization problem:

ϑ(G) := sup
∑
i,j

xij

where (xij) ∈ Symk(R)

(xij) � 0

xij = 0 whenever (i, j) /∈ E∑
i

xii = 1.

The feasible set of this optimization problem is an affine linear section of

the cone of positive semidefinite matrices; it can thus be understood as a

spectrahedron as we defined it. The objective function is linear. Thus ϑ(G)

is indeed the optimal value of a semidefinite programming problem. The fact

that ϑ(G) lies between ω(G) and χ(G) is not too hard to prove. We refer the

reader to Barvinok’s book [4].
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1.3 First Properties and Constructions

We collect some basic properties of spectrahedra. Note that Properties 1.-3.

are standard properties of polyhedra.

1. From the definition it is easily seen that spectrahedra are convex, closed

and semi-algebraic sets.

2. Spectrahedra are even basic closed semi-algebraic, i.e. definable by

finitely many simultaneous polynomial inequalities. Indeed if M is a

linear matrix polynomial and p1, . . . , pm ∈ R[x] are its principal minors,

then

S(M) = {a ∈ Rn | p1(a) ≥ 0, . . . , pm(a) ≥ 0} .

The picture on the left in Figure 1.1 shows the union of the unit disk

and a square. This is a typical example of a semi-algebraic set that is

not basic closed. So it is not a spectrahedron.

Figure 1.1:

3. Ramana and Goldmann [48] show that spectrahedra have only exposed

faces.

A face of a convex set S ⊆ Rn is a nonempty convex subset F ⊆ S, such

that for x, y ∈ S and λ ∈ [0, 1], λx+ (1− λ)y ∈ F implies x, y ∈ F . So

the faces different from S are certain extremal subsets of the boundary

of S. A special case is that of an extreme point (i.e. if F = {a} is a

singleton). A face F of S is exposed, if there is an affine linear function

` on Rn, with ` ≥ 0 on S and

F = {a ∈ S | `(a) = 0}.

In case that F 6= S this is the same as saying that there is a supporting

hyperplane of S that touches S precisely in F .
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Ramana and Goldmann first show that the faces of a spectrahedron

can be parametrized via the kernels of the defining matrix polynomial.

Indeed if U ⊆ Rk is a subspace, then

FU := {a ∈ S(M) | U ⊆ kerM(a)}

is a face of S(M), and each face is of that form. They deduce that

each face is exposed. Indeed if u1, . . . , ur is a basis of U , then the affine

linear function

`(a) := ut1M(a)u1 + · · ·+ utrM(a)ur

is nonnegative on S(M) and exposes FU .

The picture on the right in Figure 1.1 shows the basic closed semi-

algebraic set defined by the inequalities −1 ≤ x1, 0 ≤ x2 ≤ 1, x3
1 ≤

x2. The origin is a non-exposed face of that set, and it is thus not a

spectrahedron.

4. Each spectrahedron is definable by a symmetric linear matrix poly-

nomial. Indeed let M be a hermitian linear matrix polynomial, and

decompose M = R+ iI into a symmetric linear matrix polynomial R
and a real skew-symmetric matrix polynomial I. Then

M′ :=

(
R I
−I R

)
is a symmetric linear matrix polynomial, and one has

S(M) = S(M′).

This easy fact is for example explained in Ramana and Goldmann [48],

and will also follow from Lemma 3.2.14 below.

5. If a spectrahedron has nonempty interior in Rn, then it is definable by

a strictly feasible linear matrix polynomial, i.e. a linear matrix poly-

nomial M with M(a) � 0 for some a ∈ Rn. Here, � denotes positive

definiteness. Indeed any defining matrix polynomial can be reduced to

such a strictly feasible matrix polynomial. This is for example proven

in Ramana and Goldmann [48], Corollary 5, or Helton and Vinnikov

[21], Lemma 2.3. The argument is as follows:



1.3. FIRST PROPERTIES AND CONSTRUCTIONS 19

We can assume without loss of generality that the origin is in the inte-

rior of S(M). Thus M0 ± εMi is positive semidefinite, for some ε > 0

and all i = 1, . . . , n. So whenever v ∈ Rk is in the kernel of M0, then

0 ≤ vt (M0 ± εMi) v = ±εvtMiv.

So vtMiv = 0 and thus also vt (M0 ± εMi) v = 0. Since M0 ± εMi

is positive semidefinite, this implies (M0 ± εMi) v = 0, which finally

yields Miv = 0. So the kernel of M0 is contained in the kernel of

each Mi. After a suitable change of coordinates, all matrices split off a

block of zeros. When deleting this block, the new matrix M0 is positive

definite, which finishes the argument.

After conjugation with a suitable matrix, we then get

M0 = I,

the identity matrix. A linear matrix polynomial with M0 = I will be

called monic.

We will restrict ourselves to monic linear matrix polynomials

throughout this first part of the work! This means restricting

ourselves to spectrahedra that contain the origin in the interior. Since

we can always replace the ambient space of a spectrahedron by its affine

hull, and make a suitable translation, this is not a real restriction.

The class of spectrahedra is obviously closed under certain elementary

constructions. For instance, the intersection of two spectrahedra is again a

spectrahedron. If S = S(M) and T = S(N ), then

S ∩ T = S(M⊕N ),

where

M⊕N =

(
M

N

)
is the diagonal block matrix built of M and N . Also the inverse image of a

spectrahedron under an affine linear map is again a spectrahedron. This is

immediately clear from the definition. Thus finally the cartesian product of

two spectrahedra is again a spectrahedron. It can in fact be realized as the

intersection of two inverse images.
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In contrast to polyhedra, the image of a spectrahedron under an affine

linear map is not necessarily a spectrahedron, as we will see in Part II of this

work in detail. Also the convex hull of two spectrahedra is not necessarily

again a spectrahedron.

The next Chapter is devoted to explaining one of the most important

properties of spectrahedra, the so-called rigid convexity.



Chapter 2

Real Zero Polynomials & Rigid

Convexity

2.1 Definitions

The notion of rigid convexity has been introduced by Helton and Vinnikov

in their seminal paper [21]. They show that each spectrahedron is rigidly

convex, so the notion works well for excluding sets from being spectrahe-

dra. Conversely, they proof that each rigidly convex set in the plane is a

spectrahedron. This deep result provides a complete characterization of two-

dimensional spectrahedra. Whether the same also works in higher dimensions

is one of the most important open problems in the area of convex algebraic

geometry.

To explain rigid convexity, we start with the notion of a real zero poly-

nomial:

Definition 2.1.1. A polynomial p ∈ R[x] is called a real zero polynomial, if

p(0) = 1 and if for all a ∈ Rn and λ ∈ C,

p(λ · a) = 0⇒ λ ∈ R.

Note that the second condition means that p has only real roots, if re-

stricted to any line through the origin. The geometric way to state this is

the following. If

VR(p) = {a ∈ Rn | p(a) = 0}

21
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denotes the real zero set of p, then any generic line through the origin in

Rn intersects VR(p) in deg(p) many points. We will also use the following

notation: for a ∈ Rn we denote by pa the univariate polynomial

pa(t) := p(t · a).

So p is a real zero polynomial if and only if all pa split into linear factors over

R. The following definition will be used later on.

Definition 2.1.2. A real zero polynomial p ∈ R[x] is called smooth if none

of the polynomials pa(t) with a ∈ Rn \{0} has a multiple root. This includes

possible roots at infinity, i.e. we must have deg(pa) ≥ deg(p)−1 for all a 6= 0.

Remark 2.1.3. It is easily seen that a product pq of polynomials is real zero

if and only if both p and q are real zero.

Example 2.1.4. An easy example for a real zero polynomial is a (suitably

scaled) product of linear polynomials; a nontrivial example is the polynomial

p = x3
1− x2

1− x− x2
2 + 1 ∈ R[x1, x2]. An example of a polynomial that is not

a real zero polynomial is q = 1 − x4
1 − x4

2. See Figure 2.1 for the zero set of

a product of linear polynomials, the zero set of p, and the zero set of q. The

intersection points with a line through the origin are marked as dots.

Figure 2.1:

A rigidly convex set is now just the ellipsoid within the innermost ring of

zeros of some real zero polynomial. Here is an exact definition:

Definition 2.1.5. Let p ∈ R[x] be a real zero polynomial. Then the set

R(p) := {a ∈ Rn | pa has no roots in the interval [0, 1)}

is called the rigidly convex set defined by p.
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Note that the rigidly convex set defined by p consists of all line segments

joining the origin and the first zero of p, in each direction.

Example 2.1.6. The set on the left in Figure 2.2 is the rigidly convex set

defined by the polynomial p = x3
1 − x2

1 − x − x2
2 + 1. The set on the right

is S = {(a1, a2) ∈ R2 | a4
1 + a4

2 ≤ 1}. It is easily seen to not be rigidly

convex. Indeed if it was, there would be a real zero polynomial vanishing on

the boundary of S. This polynomial would need to contain q = 1− x4
1 − x4

2

as a factor, which is impossible for a real zero polynomial.

Figure 2.2:

Remark 2.1.7. There is a strong connection between real zero polynomials

and so-called hyperbolic polynomials. We will explain this connection in Sec-

tion 2.3 in more detail. At this point just note that a result of G̊arding [16]

on hyperbolic polynomials immediately implies that rigidly convex sets are

indeed convex. That result can also be deduced from the important result of

Helton and Vinnikov, Theorem 2.1.12 below.

Also note that a result of Renegar [49] implies that rigidly convex sets

are basic closed semi-algebraic and have only exposed faces.

As already mentioned, each spectrahedron is a rigidly convex set. This

interesting fact was first observed by Helton and Vinnikov [21]. We explain

the approach from Netzer and Thom [41]. The following easy lemma will be

useful at several points in the following work.

Lemma 2.1.8. LetM = I+x1M1+· · ·+xnMn be a linear matrix polynomial

and p := detM ∈ R[x] its determinant. Then for each a ∈ Rn, the nonzero

eigenvalues of a1M1 + · · ·+ anMn are in one to one correspondence with the

zeros of the univariate polynomial pa(t) := p(t · a), counting multiplicities.

The correspondence is given by the rule λ 7→ − 1
λ

.
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Proof. Fix a ∈ Rn and let ca denote the characteristic polynomial of the

hermitian matrix a1M1 + · · ·+ anMn. For any λ 6= 0 we have

ca(λ) = det (−λI + a1M1 + · · ·+ anMn)

= (−λ)kp

(
a

−λ

)
= (−λ)kpa

(
−1

λ

)
.

We see that each nonzero eigenvalue λ of a1M1 + · · · + anMn gives rise to a

zero of pa by the above defined rule. We also see that each zero of pa arises

in this way, since 0 is not such a zero. Taking the derivative with respect to

λ in the above equality we see that also the multiplicity of λ as a zero of ca
coincides with the multiplicity of − 1

λ
as a zero of pa.

As an immediate corollary we get:

Corollary 2.1.9. Let p = det(M) be the determinant of some linear matrix

polynomial. Then p is a real zero polynomial.

Proof. Since hermitian matrices have only real eigenvalues, the claim follows

directly from Lemma 2.1.8.

Also straightforward is the following:

Corollary 2.1.10. Let M be a linear matrix polynomial. Then the spectra-

hedron S(M) can be recovered from p = det(M) only. Indeed one has

S(M) = R(p).

Proof. M(a) is positive semidefinite if and only if all eigenvalues of the matrix

a1M1+· · ·+anMn are greater or equal to −1. By Lemma 2.1.8, this translates

to pa having no zeros in [0, 1).

Combining Corollary 2.1.9 and Corollary 2.1.10, we finally see:

Corollary 2.1.11. Each spectrahedron is rigidly convex.

A deep and important result is that the converse of Corollary 2.1.11 holds

in dimension two. We just state it here, and will go into more details in

Chapter 3.

Theorem 2.1.12 (Helton & Vinnikov [21]). Each rigidly convex set in R2

is a spectrahedron.
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We now observe that the set on the left in Figure 2.2 is a spectrahedron,

although we are maybe not able to find a defining linear matrix polynomial

right away. We also see that the set on the right is not a spectrahedron.

All in all, the question to characterize spectrahedra can be considered

as completely solved in the plane. Given a convex set S, one has to check

whether there is a real zero polynomial p with S = R(p). The canonical

choice for such p is a polynomial that has as its real zero set the real Zariski

closure of the boundary of S.

In higher dimensions, we have the following important open problem:

Question 2.1.13. Is it true that every rigidly convex set in Rn is a spectra-

hedron?

Although we cannot answer that question, we will deal with related prob-

lems in Chapter 3.

2.2 The Multivariate Hermite Matrix

An interesting tool for checking whether a polynomial is real zero is the

multivariate Hermite matrix. It is a straightforward generalization of the

univariate Hermite matrix. Our approach is from Netzer, Plaumann and

Thom [39]. A similar notion appears earlier in Henrion [22], and in several

unpublished presentations of Parrilo.

Definition 2.2.1. Let p ∈ R[t] be a monic univariate polynomial of degree

d and let λ1, . . . , λd ∈ C be all of its zeros. Then for any k ∈ N, the k-th

Newton sum Nk(p) is the k-th power sum of the zeros:

Nk(p) =
d∑
i=1

λki .

Note that the Newton sums are symmetric functions of the λi, and can be

expressed as polynomials in the elementary symmetric functions, and thus in

the coefficients of the polynomial p. So we need not know the zeros of p to be

able to compute its Newton sums. If p = td + p1t
d−1 + p2t

d−2 + · · ·+ pd, the

following well-known formula of Newton allows to recursively obtain these

representations:

Nk(p) = −
k−1∑
i=1

pk−iNi(p)− kpk, for k ≥ 1.
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Here we set pi = 0 for i > d. The first few formulas thus look like this:

N0(p) = d,N1(p) = −p1, N2 = p2
1 − 2p2

N3(p) = −p3
1 + 3p1p2 − 3p3.

Definition 2.2.2. Let p ∈ R[t] be a monic univariate polynomial of degree

d. The Hermite matrix of p is defined as

H(p) = (Ni+j−2(p))i,j=1,...,d =


N0(p) N1(p) N2(p) · · · Nd−1(p)

N1(p) N2(p) · · · Nd(p)

N2(p)
...

...
...

Nd−1(p) Nd(p) · · · N2d−2(p)

 .

Example 2.2.3. For a quadratic polynomial p = t2 + p1t+ p2 we find

H(p) =

(
2 −p1

−p1 p2
1 − 2p2

)
.

What makes the Hermite matrix useful for our purpose is the following

classical result, stated for example as Theorem 4.59 in Basu, Pollack and Roy

[5].

Proposition 2.2.4. The polynomial p has only real roots if and only if H(p)

is positive semidefinite. H(p) is positive definite if and only if all these real

roots are distinct.

We now need a generalization of the Hermite matrix for a multivariate

polynomial p ∈ R[x]. We assume p(0) = 1 and write

p = 1 + p1 + · · ·+ pd

as a sums of its homogeneous terms. Let p̃ denote the homogenization of p,

i.e.

p̃ = td · p
(x
t

)
= td + p1t

d−1 + · · ·+ pd.

Definition 2.2.5. The multivariate Hermite matrix H(p) of p is the Hermite

matrix of p̃ as a polynomial in t:

H(p) = H(p̃).
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We immediately observe that H(p) is a Hankel matrix, whose entries are

polynomial expressions in the homogeneous terms pi of p. The (i, j)-entry is

a homogeneous polynomial in x of degree i + j − 2. From Proposition 2.2.4

we get the following:

Proposition 2.2.6. The polynomial p is a real zero polynomial if and only

if H(p) is positive semidefinite at each point:

H(p)(a) � 0 for all a ∈ Rn.

The polynomial p is smooth if and only if H(p) is positive definite at each

point a ∈ Rn \ {0}.

Proof. For a ∈ Rn, H(p)(a) is the univariate Hermite matrix of the polyno-

mial

td + p1(a)td−1 + · · ·+ pd(a).

This is however just the opposite polynomial of

pa(t) = 1 + p1(a)t+ · · ·+ pd(a)td.

Since the roots of pa arise from those of the opposite polynomial by the rule

λ 7→ 1
λ

(including possible roots at infinity of pa), the result is clear from

Proposition 2.2.4.

Remark 2.2.7. If a real zero polynomial p of degree d is considered as a

polynomial of degree d′ > d, then the size of the multivariate Hermite matrix

increases. The condition of being positive semidefinite at each point is not

affected however. On the other hand, the Hermite matrix might now fail to

be positive definite at each point, even if it was before. This is clear, since

considering p as a polynomial of degree d′ means adding zeros at infinity,

which might destroy smoothness of p (compare to Definition 2.1.2). If not

stated otherwise, we will always consider p as a polynomial of degree d =

deg(p) from now on.

In the case of two variables, the Hermite matrix of a real zero polynomial

turns out to be even a sum of squares of polynomial matrices. This was first

observed by Parrilo and Henrion. Checking whether a polynomial matrix is a

sum of squares can be transformed into a semidefinite programming problem,

and thus solved efficiently. So checking whether a bivariate polynomial is real

zero can be done efficiently. We give a proof of the result on sums of squares

decompositions of the Hermite matrix:
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Proposition 2.2.8. Let p ∈ R[x1, x2] be a real zero polynomial of degree d.

Then

H(p) = QtQ

for some Q ∈ M2d×d (R[x1, x2]) .

Proof. Consider H ′ := H(p)(1, x2) ∈ Symd(R[x2]). Since this matrix is uni-

variate and positive semidefinite at each point, by Jakubovič [24] it can be

written as a square:

H ′ = P tP, P ∈ M2d×d (R[x2]) .

We know that the (i, j)-entry of H ′ is a polynomial of degree at most i+j−2.

So each entry in the i-th column of P is of degree at most i− 1.

Now let Q ∈ M2d×d (R[x1, x2]) be the matrix arising by homogenizing the

i-th column of P to degree i−1, i.e. replacing each entry Pr,i by xi−1
1 ·Pr,i(x2

x1
).

Now the (i, j)-entry of QtQ is the homogenization to degree i+ j − 2 of the

(i, j)-entry of H ′. This equals the (i, j)-entry of H(p).

We will see in Chapter 3 how sums of squares decompositions of the

Hermite matrix are closely related to determinantal representations of the

polynomial p.

We finish this section with a first observation on the topology of the set of

real zero polynomials. For n, d ∈ N we denote by Rn,d the set of all real zero

polynomials of degree at most d in n variables. It is a subset of R[x]d, the

finite dimensional space of all polynomials of degree at most d. By definition,

Rn,d is contained in the hyperplane defined by the condition p(0) = 1.

Proposition 2.2.9. The set Rn,d is a closed semi-algebraic set. Inside of

the hyperplane of R[x]d defined by p(0) = 1 it has nonempty interior. The

interior consists precisely of those real zero polynomials that are smooth,

when considered as polynomials of degree d. Furthermore, Rn,d is semi-

algebraically connected.

Proof. Being a real zero polynomial can be expressed in a formula of first

order logic, using quantifiers. By quantifier elimination of the theory of real

closed fields, the set Rn,d is a semi-algebraic subset of R[x]d.

From the fact that p is a real zero polynomial if and only if H(p) is

positive semidefinite at each point, and since the Hermite matrix depends
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continuously on the polynomial, it is clear that Rn,d is closed. Now assume

that p is smooth, as a polynomial of degree d. Then its Hermite matrix is

positive definite, at each point a ∈ Sn−1. This is clearly an open condition,

since the sphere Sn−1 is compact. Assume conversely that p is not smooth.

We show that p does lie in the boundary of Rn,d, inside of the hyperplane

defined by p(0) = 1. If some pa has a multiple zero which does not lie at

infinity, it is easy to see that there are polynomials q arbitrary close to p,

with q(0) = 1 and qa having a non-real root. One can in fact reduce to the

univariate case. So now assume that pa has a multiple root at infinity, for

some a 6= 0. This just means deg(pa) ≤ d − 2. We can assume that a is

the first coordinate direction e1. Write p = 1 + p1 + · · · + pd as a sum of

homogeneous terms. Then set

p(ε) := p+ ε · x2
1 · (1 + p1 + · · ·+ pd−2).

Clearly p(ε) is of degree at most d, fulfills p(ε)(0) = 1 and converges to p, for

ε→ 0. We find

p(ε)
a = pa + ε · t2 · pa = pa · (1 + ε · t2),

and this univariate polynomial has a non-real zero for ε > 0.

Finally, every real zero polynomial p can be connected to the polynomial

1 by the continuous semi-algebraic path s 7→ p(s · x), where s ∈ [0, 1].

2.3 Hyperbolic Polynomials

As already mentioned, there is a strong connection between real zero polyno-

mials and hyperbolic polynomials. Hyperbolic polynomials play an important

role in some areas of partial differential equations, for example. We start with

the definition.

Definition 2.3.1. Let q ∈ R[x0, x1, . . . , xn] be a homogeneous polynomial.

Then q is hyperbolic if q(1, 0, . . . , 0) = 1 and for all (a0, . . . , an) ∈ Rn+1, the

univariate polynomial

q(t) = q(a0 + t, a1, . . . , an)

has only real roots.



30 CHAPTER 2. REAL ZERO POLYNOMIALS & RIGID CONVEXITY

The connection to real zero polynomials is subsumed in the following easy

and well-known lemma.

Lemma 2.3.2. If p ∈ R[x1, . . . , xn] is a real zero polynomial, then its ho-

mogenization

p̃ = x
deg(p)
0 p

(
x

x0

)
is hyperbolic. Conversely, if q ∈ R[x0, . . . , xn] is hyperbolic, then its deho-

mogenization

p = q(1, x1, . . . , xn)

is a real zero polynomial.

Proof. First note that p̃(1, 0, . . . , 0) = p(0) = 1. Now let (a0, . . . , an) ∈ Rn+1

and λ ∈ C, and assume

p̃(a0 + λ, a1, . . . , an) = 0.

In case that a0 + λ = 0, λ is clearly real. In the other case we find

0 =

(
1

a0 + λ

)deg ep
· p̃(a0 + λ, a1, . . . , an)

= p̃

(
1,

a1

a0 + λ
, . . . ,

an
a0 + λ

)
= p

(
a1

a0 + λ
, . . . ,

an
a0 + λ

)
.

Since p is assumed to be real zero, this implies 1
a0+λ

∈ R, and thus also λ ∈ R.

So p̃ is hyperbolic.

For the second claim first observe p(0) = q(1, 0) = 1. Now let (a1, . . . , an) ∈
Rn and λ ∈ C with

0 = p(λ · a) = q(1, λ · a1, . . . , λ · an).

Since λ 6= 0 and q is homogeneous, this implies

q

(
1

λ
, a1, . . . , an

)
= 0,

and since q is hyperbolic, 1
λ

and thus λ is real. So p is a real zero polynomial.
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There is another way to get a real zero polynomial from a hyperbolic

polynomial, besides dehomogenization. The idea appears first in Brändén’s

paper [8], the proof is as easy as the last one.

Remark 2.3.3. If q ∈ R[x0, . . . , xn] is hyperbolic, then the shifted polyno-

mial

p(x0, . . . , xn) := q(x0 + 1, x1, . . . , xn)

is a real zero polynomial.

There is an analog of the rigidly convex set for hyperbolic polynomials.

It is called a hyperbolicity cone:

Definition 2.3.4. Let q ∈ R[x0, . . . , xn] be hyperbolic. Then the set

Λ(q) :=
{

(a0, . . . , an) ∈ Rn+1 | q(a0 + t, a1, . . . , an) has no positive root
}

is called the hyperbolicity cone defined by q.

If p is a real zero polynomial, and p̃ is its homogenization, then the fol-

lowing fact is easily checked:

R(p) = Λ(p̃) ∩ {x0 = 1}.

As already mentioned, G̊arding [16] has shown hyperbolicity cones to be

convex cones. So we see that rigidly convex sets are convex. This can also be

deduced from Theorem 2.1.12, using the fact that spectrahedra are obviously

convex, and that convexity can be checked on two-dimensional subspaces.

Renegar [49] has shown hyperbolicity cones to be basic closed semi-algebraic.

So the same is true for rigidly convex sets. He also showed that all faces of

hyperbolicity cones are exposed. Again this is true for rigidly convex sets, as

noted in Netzer, Plaumann and Schweighofer [38].

Corollary 2.3.5. The faces of a rigidly convex set are exposed.

Proof. Let S = R(p) ⊆ Rn be rigidly convex. Let p̃ be the homogenization of

p, and denote by C = Λ(p̃) the hyperbolicity cone of p̃ in Rn+1. Let F0 be a

face of S. For any two points a 6= b ∈ Rn+1, let g(a, b) denote the line passing

through a and b. Take a0 in the relative interior of F0, and let F be the set
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of all points c ∈ C such that a0 lies in the relative interior of g(c, a0)∩C (one

has to include a0 to F as well). One checks that F is a face of C and that

F ∩ {x0 = 1} = F0.

Since F is exposed as a subset of C, so is F0 as a subset of S.

In the next section of this chapter, we introduce the so-called Renegar

derivative of hyperbolic and real zero polynomials. These derivatives were

the main tools in proving Renegar’s results.

2.4 Renegar Derivatives

Definition 2.4.1. Let q ∈ R[x0, x1, . . . , xn] be a hyperbolic polynomial.

Then

∂R(q) :=
1

deg(q)
· ∂q
∂x0

is called the Renegar derivative of q. Iteratively, one defines

∂
(i+1)
R (q) := ∂R

(
∂

(i)
R (q)

)
.

From Rolle’s Theorem it immediately follows that ∂R(q) is again hyper-

bolic, and that

Λ(q) ⊆ Λ(∂R(q))

holds. To prove his results, Renegar defined for a = (a0, . . . , an) ∈ Λ(q)

mult(a)

to be the multiplicity of 0 as a zero of the polynomial q(a0 + t, a1, . . . , an).

He showed that if mult(a) = m > 0, then a is a boundary point of

Λ
(
∂

(m−1)
R (q)

)
and a regular point of the polynomial ∂

(m−1)
R (q). The tangent space of

∂
(m−1)
R (q) at a then exposes the smallest face of Λ(q) containing a. He also

showed that the finite sequence of iterated Renegar derivatives of q define

Λ(q) as a basic closed semi-algebraic set, i.e.

Λ(q) =
{
a ∈ Rn+1 | ∂(i)

R (q)(a) ≥ 0 for all i = 0, . . . , deg(q)− 1
}
.

We translate the same notion into the setup of real zero polynomials.
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Definition 2.4.2. Let p ∈ R[x] be a real zero polynomial and let

p̃ = x
deg(p)
0 · p

(
x

x0

)
denote its homogenization. Then

∂R(p) := ∂R(p̃)(1, x)

is called the Renegar derivative of p. Again, we define

∂
(i+1)
R (p) := ∂R

(
∂

(i)
R (p)

)
inductively.

Remark 2.4.3. The Renegar derivative of a real zero polynomial can also

be defined as follows. Write p = 1+p1 + · · ·+pd as a sum of its homogeneous

components. Then

∂R(p) = 1 +
d− 1

d
· p1 + · · ·+ 2

d
· pd−2 +

1

d
· pd−1 =

d−1∑
i=0

d− i
d
· pi.

It should now be clear from the facts of the last section that ∂R(p) is again

a real zero polynomial. For each direction a ∈ Rn, the zeros of ∂R(p) lie in

between the zeros of p (including possible zeros at infinity). The multiplicities

of zeros of p in direction a are thus reduced by one. Furthermore, one has

R(p) ⊆ R(∂R(p)),

and the finite sequence of Renegar derivatives define R(p) as a basic closed

semi-algebraic set, i.e.

R(p) =
{
a ∈ Rn | ∂(i)

R (p)(a) ≥ 0 for all i = 0, . . . , deg(p)− 1
}
.

One defines mult(a) for a ∈ R(p) as the multiplicity of 1 as a zero of the

univariate polynomial pa(t). If mult(a) = m > 0, then a is a boundary point

of

R
(
∂

(m−1)
R (p)

)
and a regular point of ∂

(m−1)
R (p). The tangent space of ∂

(m−1)
R (p) at a exposes

the smallest face of R(p) containing a.
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Example 2.4.4. In Figure 2.3 you can see the zero set of

p = x3
1 − x2

1 − x− x2
2 + 1

again, and the zero sets of its first two Renegar derivatives. The green dot is

a point in R(p) of multiplicity 2, and it is exposed by the tangent space to

the blue curve at that point.

Figure 2.3:

t1

t2

2.5 Smooth Approximation

In this section we describe a method for smooth approximation of real zero

polynomials. It is a straightforward translation of a result of Nuij [42] for

hyperbolic polynomials. Recall that we call a real zero polynomial p ∈ R[x]

smooth, if none of the polynomials pa with a ∈ Rn \ {0} has a multiple root,

including possible roots at infinity. This is equivalent to the Hermite matrix

H(p) being positive definite at each point a 6= 0.

Let p ∈ R[x] be a real zero polynomial. For ε > 0 and i ∈ {1, . . . , n} we

define

Gε,i(p) := p+ ε · xi · ∂R(p).

Here, ∂R(p) is the Renegar derivative of p. Note that for small ε, Gε,i(p) has

the same degree as p. We then define

Gε(p) := Gε,1 · · ·Gε,n(p).
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Lemma 2.5.1. If p is a real zero polynomial, then Gε(p) is again real zero.

If pa has a zero λ of multiplicity m, for some a ∈ Rn, then λ is a zero of

Gε(p)a of multiplicity at most m − 1. The zeros of Gε(p)a that do not arise

in this way are all simple.

Proof. Consider the homogenization p̃ = xd0 ·p
(
x
x0

)
and its hyperbolic Rene-

gar derivative ∂R(p̃) = 1
d
· ∂ep
∂x0
. The polynomial

qi = p̃+ ε · xi · ∂R(p̃)

is homogeneous, for all i = 1, . . . , n. Consider now for a ∈ Rn the univariate

polynomial

qi(x0, a) = p̃(x0, a) + ε · ai · ∂R(p̃)(x0, a).

As described by Nuij [42], for a univariate polynomial h with only real zeros,

and s 6= 0, the polynomial h+ sh′ also has only real roots, and reduced zero

multiplicities as desired for our lemma. So each qi is hyperbolic, and the zero

multiplicities of qi(x0, a) are reduced as desired, if ai 6= 0. As seen in the

proof of Lemma 2.3.2, the polynomial

Gε,i(p) = p+ ε · xi · ∂R(p)

is real zero and has the desired zero multiplicity reduction in direction of a,

if ai 6= 0. Since we repeat this procedure for all i = 1, . . . , n, this proves the

claim.

We denote by Gm
ε (p) the m-fold application of the operator Gε to p. The

following is now clear.

Corollary 2.5.2. If m is the highest multiplicity of a zero of pa among all

directions a 6= 0, then Gm−1
ε (p) is smooth. The polynomials Gm−1

ε (p) are all

real zero polynomials, of the same degree as p if ε is small enough, and they

converge to p for ε→ 0.

Example 2.5.3. In Figure 2.4 you see, from left to right, the zero sets of

p,Gε(p) and G2
ε(p), for

p = (1− x1) · (x3
1 − x2

1 − x1 − x2
2 + 1)

and ε = 1/5.
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Figure 2.4:

Recall that we denote by Rn,d the set of all real zero polynomials in n

variables of degree d. We have seen in Proposition 2.2.9 that Rn,d is closed

semi-algebraic, connected, and of non-empty interior in the hyperplane of

R[x]d defined by p(0) = 1. The following is Nuij’s result, translated to real

zero polynomials.

Proposition 2.5.4. Rn,d is regular in the hyperplane defined by p(0) = 1,

i.e. it is the closure of its interior.

Proof. Let p ∈ Rn,d. If deg(p) < d, we can clearly approximate p with real

zero polynomials of degree d. For example take p ·q(ε ·x), with a suitable real

zero polynomial q. Now if deg(p) = d, we can approximate p by smooth real

zero polynomials of degree d, as shown in Corollary 2.5.2. But smooth real

zero polynomials of degree d belong to the interior of Rn,d in the hyperplane

defined by the condition p(0) = 1, as was shown in Proposition 2.2.9.

Remark 2.5.5. One could also use the simpler approximation

p+ ε · ∂R(p)

for a real zero polynomial p and ε > 0. This is again a real zero polynomial,

as one shows similar as in the proof of Lemma 2.5.1, using this time that for

ε > 0

h+ ε · t · h′

splits over R, if h ∈ R[t] does. This approximation does however not smooth

zeros at infinity, as one checks for example for p = 1− x2
1 ∈ R[x1, x2].



Chapter 3

Determinantal Representations

3.1 Preliminaries

Recall that a central issue of our work is the characterization of spectrahedra.

As we have explained in the last chapter, each spectrahedron is rigidly convex,

and we are interested in the question whether the converse is true. One of

the crucial observations in the last chapter was Corollary 2.1.10. It says that

the spectrahedron S(M), defined by the linear matrix polynomial M, can

be recovered from the real zero determinantal polynomial

p = detM.

In fact we found

S(M) = R(p)

to hold. So for a rigidly convex set R(p) to be a spectrahedron, it is clearly

enough that p can be realized as the determinant of a linear matrix polyno-

mial M. Recall at this point that we assume all linear matrix polynomials

to be monic. Helton and Vinnikov proved their already stated main result

(Theorem 2.1.12 above) via the following stronger theorem:

Theorem 3.1.1 (Helton & Vinnikov [21]). Let p ∈ R[x1, x2] be a real zero

polynomial of degree d. Then there is a symmetric linear matrix polynomial

M of size d with

p = detM.

Note that Sturmfels, Plaumann and Vinzant [44] describe several ways of

how to construct the matrix polynomial M for a given polynomial p.

37
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Helton and Vinnikov already note that one cannot expect the same result

to be true in higher dimensions. By counting parameters, one sees that the

set of all n-tuples of symmetric matrices of size d is of dimension

n ·
(
d+ 1

2

)
.

The semi-algebraic set of real zero polynomials in n variables of degree d is

of dimension (
d+ n

d

)
− 1

however (see also Section 3.3.1 below). So one cannot expect the analog of

Theorem 3.1.1 to hold for n ≥ 3. Also passing to hermitian matrices instead

of symmetric matrices does not solve the problem of dimensional differences.

Helton and Vinnikov have however conjectured that allowing for matrices of a

larger size than the degree d would make the result valid in higher dimensions.

This is however also not true, as was shown first by Brändén [8], and will be

discussed below in more detail.

If we are only interested in spectrahedra however, the Helton-Vinnikov

Theorem would suffice to hold in an even weaker version. Indeed representing

some multiple qp as a determinant, as long as R(qp) = R(p) holds, proofs

that R(p) is a spectrahedron. In particular, representing some power pr of p

would do. Although Brändén showed that this is also not possible in general,

some positive results can be proven. We will discuss positive and negative

results concerning determinantal representations of real zero polynomials in

the following sections.

3.2 Bounds on the Size

One cannot expect to realize every real zero polynomial of degree d as the

determinant of some linear matrix polynomial of size d. But one can look

for matrix polynomials of larger size of course. There can indeed by degree

cancellation when computing determinants, as the following example shows.
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Example 3.2.1. Let pn = 1− x2
1 − · · · − x2

n ∈ R[x]. Then

pn = det


1 x1 · · · xn
x1 1
...

. . .

xn 1

 .

The linear matrix polynomial occuring here is of size n + 1, whereas pn has

degree 2.

We will prove lower and upper bounds on the possible size of a linear

matrix polynomial in the following. The results are published in Netzer and

Thom [41]. Most of the results are based on the following easy lemma.

Lemma 3.2.2. LetM = I+x1M1+· · ·+xnMn be a linear matrix polynomial

and assume p = detM is of degree d. Then each matrix in the real vector

space

spanR {M1, . . . ,Mn}

has rank at most d, and the generic linear combination has rank precisely d.

Proof. The rank of any matrix a1M1+· · ·+anMn is the number of its nonzero

eigenvalues, which by Lemma 2.1.8 correspond to the zeros of the univariate

polynomial pa. Now each pa has degree at most d, and thus at most d zeros.

For all a for which pa has degree precisely d, the matrix is of rank precisely

d. This is true for the generic choice of a.

3.2.1 Upper Bounds

There is a surprisingly simple to prove upper bound on the size of a lin-

ear matrix polynomial, depending on the degree of its determinant and the

number of variables.

Theorem 3.2.3. Let p ∈ R[x1, . . . , xn] be a real zero polynomial of degree d.

If p has a symmetric/hermitian determinantal representation, then it has a

symmetric/hermitian determinantal representation of size nd.

Proof. Assume

p = det (I + x1M1 + . . .+ xnMn)
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for some matrices Mi ∈ Hk(C). Let Ki ⊆ Ck be the kernel of the linear map

defined by Mi. By Lemma 3.2.2 we find dimCKi ≥ k − d for all i. From the

dimension formula for subspaces we get

dim (K1 ∩ . . . ∩Kn) ≥ k − nd.

So if k > nd we can simultaneously split off a k − nd block of zeros of each

Mi, by conjugation with a unitary matrix. This produces a determinantal

representation of p of size nd. The same argument works with symmetric

matrices and an orthogonal base change.

This last result will allow an easy dimension count argument to show that

indeed almost no real zero polynomial admits a determinantal representation.

See Section 3.3 for that result.

Under an additional geometric condition one can decrease the upper

bound of nd to d. We need the following technical proposition.

Proposition 3.2.4. Let V ⊆ Hk(C) be an R-subspace of hermitian matrices,

such that all elements of V have rank at most d. If V contains a positive

semidefinite matrix of rank d, then there is some unitary matrix Q ∈Mk(C)

such that

Q∗V Q ⊆

{(
A 0

0 0

)
| A ∈ Hd(C)

}
.

If V ⊆ Symk(R), then Q can be chosen real orthogonal.

Proof. After a unitary/orthogonal change of coordinates we can assume that

V contains a matrix

P ′ =

(
P 0

0 0

)
where P is a positive definite matrix of size d. Let A′ be an arbitrary matrix

from V and write

A′ =

(
A B

B∗ C

)
We show B = 0 and C = 0.

We know that A′+λP ′ has rank at most d for all λ ∈ R, and the upper left

block of size d in this matrix has arbitrary large eigenvalues, for λ big enough.

Consider any quadratic submatrix of size d + 1 of A′ + λP ′, containing this

upper left block, obtained by deleting the same set of rows and columns:
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(
A+ λP b

b∗ c

)
Here b ∈ Cd is a certain column of B, and c is the corresponding diagonal

entry of C. From the rank condition we see that the last column in this

matrix is a linear combination of the first d columns, at least for λ ∈ R
large enough. If v = (v1, . . . , vd)

t is the vector of coefficients of this linear

combination, we have

(A+ λP )v = b and b∗v = c,

which implies v∗(A + λP )v = c = c. This means that for large values of λ,

the norm of v must be arbitrary small. But his is only compatible with the

condition b∗v = c if c = 0. Since A+λP is positive definite, this then implies

v = 0, and thus b = 0. We have now shown B = 0, and this implies C = 0,

using again the rank condition for large values of λ.

The following theorem gives the best possible upper bound, under an

additional geometric condition.

Theorem 3.2.5. LetM be a symmetric/hermitian linear matrix polynomial

and let d denote the degree of p = detM. If the spectrahedron defined by M
contains a full-dimensional cone, then p can be realized as the determinant

of a symmetric/hermitian linear matrix polynomial of size d.

Proof. If the whole positive half-ray through some a ∈ Rn is contained in the

spectrahedron, then a1M1 + · · · + anMn is positive semidefinite. Since the

generic linear combination has rank d, there is such a for which a1M1 + · · ·+
anMn has rank d. Now apply Proposition 3.2.4 to the space spanned by the

Mi, to reduce the size of M to d, without changing the determinant.

Remark 3.2.6. Brändén proved a special case of Theorem 3.2.5 in his The-

orem 2.2 in [8]. He considered real zero polynomials p that arise as shifts of

hyperbolic polynomials, as explained in Remark 2.3.3. Note that for these

polynomials, R(p) clearly contains a full-dimensional cone. Brändén’s proof

relies heavily on the Cauchy-Binet formula.

Remark 3.2.7. Note that the proofs of both Theorem 3.2.3 and Theorem

3.2.5 not only show that there is a determinantal representation of relatively
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small size, but in fact every determinantal representation can be reduced in

size by a base change. A representation of very large size can thus only arise

as a trivial extensions of a relatively small one.

Before we apply these upper bounds to get negative results on determi-

nantal representations, we prove some lower bounds.

3.2.2 Lower Bounds

We will use results on spaces of symmetric matrices of low rank, of which

there are plenty in the literature. The following is the main result from

Meshulam [33], stated in the terminology of Loewy and Radwan [29].

Theorem 3.2.8. Let V ⊆ Symk(R) be a linear subspace such that all ele-

ments of V have rank at most d. Then

dimV ≤ α(k, d)

which computes as follows. For d = 2e even:

α(k, d) =

{ (
d+1
2

)
if 2k ≤ 5e+ 1(

e+1
2

)
+ e(k − e) if 2k > 5e+ 1.

For d = 2e+ 1 odd:

α(k, d) =

{ (
d+1
2

)
if 2k ≤ 5(e+ 1)(

e+1
2

)
+ e(k − e) + 1 if 2k > 5(e+ 1).

To be able to apply this result, we note the following easy fact:

Lemma 3.2.9. Let M = I + x1M1 + · · ·+ xnMn be a linear matrix polyno-

mial. If S(M) does not contain a full line, then M1, . . . ,Mn are R-linearly

independent.

Proof. Assume that some Mi is an R-linear combination of the other Mj,

and replace it by this linear combination. We see that S(M) is the inverse

image under a linear map of some nonempty spectrahedron in Rn−1. It thus

contains a full line.

Our first lower bound shows that under a mild compactness assumption,

no polynomial has a very small determinantal representation, if the number

of variables is large enough.
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Theorem 3.2.10. LetM be a symmetric linear matrix polynomial of size k,

defining a spectrahedron in Rn that does not contain a full line. Let d denote

the degree of p = detM and assume n >
(
d+1
2

)
. If d is even then

k ≥ 2n

d
+
d− 2

4
,

if d is odd then

k ≥ 2(n− 1)

d− 1
+
d− 3

4
.

Proof. From Lemma 3.2.2, Theorem 3.2.8 and Lemma 3.2.9 we obtain

n ≤ α(k, d).

The result is now just a straightforward computation.

Remark 3.2.11. Note that Lemma 3.2.9 immediately implies

n ≤ dim Symk(R) =

(
k + 1

2

)
.

This however only gives a lower bound for k which depends on the square

root of n.

Example 3.2.12. Let d = 2. Applying Theorem 3.2.10 shows that if n > 3,

then k ≥ n. So for example the real zero polynomial

pn = 1− x2
1 − · · · − x2

n

cannot be realized as the determinant of a symmetric linear matrix polyno-

mial of size smaller than n, except possibly for n = 3 (although the argument

from the proof of Theorem 3.3.7 below will show that also for n = 3 there is

no symmetric representation of size 2). There is always a realization of size

n+ 1, as explained in Example 3.2.1.

To obtain similar bounds for hermitian matrices, we need some more

preparation.

Lemma 3.2.13. For M ∈ Hk(C) write M = R + iI with a real symmetric

matrix R and a real skew-symmetric matrix I. Define

M̃ =

(
R I

−I R

)
,

a real symmetric matrix of size 2k. Then M̃ has the same eigenvalues as M ,

with double multiplicities.
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Proof. Let λ be an eigenvalue of M and z ∈ Ck a corresponding eigenvector.

If z = a+ ib with a, b ∈ Rk, then

Ra− Ib = λa and Rb+ Ia = λb.

So both (
−a
b

)
and

(
b

a

)
are eigenvectors with eigenvalue λ of M̃ . Now let z1, . . . , zm ∈ Ck be complex

vectors and write each zj = aj + ibj with aj, bj ∈ Rk. One checks that

z1, . . . , zm are C-linearly independent if and only if the vectors(
−a1

b1

)
,

(
b1
a1

)
, . . . ,

(
−am
bm

)
,

(
bm
am

)
are R-linearly independent in R2k. This finishes the proof.

Lemma 3.2.14. Let M be a hermitian linear matrix polynomial of size k,

and writeM = R+iI with real symmetric and skew-symmetric linear matrix

polynomials R and I. Define

M̃ :=

(
R I
−I R

)
.

Then M̃ is a symmetric linear matrix polynomial of size 2k with

detM̃ = (detM)2.

Proof. Write p̃ = detM̃ and p = detM. By Lemma 3.2.13, the eigenvalues of

M̃(a) are the same as the eigenvalues ofM(a), just with double multiplicity,

for each a ∈ Rn. Lemma 2.1.8 implies that p̃a has the same zeros as pa, just

with double multiplicities, for each a ∈ Rn. So p̃a = (pa)
2 for all a, which

implies p̃ = p2.

Note that the last lemma proves Property 4 from Section 1.3, i.e. that

each spectrahedron is definable by a symmetric linear matrix polynomial.

Indeed for p = detM we have

S(M) = R(p) = R(p2) = S(M̃).

From Lemma 3.2.14 we can now also immediately deduce the following

analog of Theorem 3.2.10 for hermitian matrices.
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Theorem 3.2.15. Let M be a hermitian linear matrix polynomial of size k,

defining a spectrahedron in Rn that does not contain a full line. Let d denote

the degree of p = detM and assume n >
(
2d+1

2

)
. Then

k ≥ n

2d
+
d− 1

4
.

3.2.3 Representations of Hyperbolic Polynomials

We have already explained the close relationship between real zero polyno-

mials and hyperbolic polynomials in Section 2.3. We want to add a short

comparison between determinantal representations of both kinds of polyno-

mials. First note that if M1, . . . ,Mn ∈ Herk(C), then

q = det (x0I + x1M1 + · · ·+ xnMn)

is a hyperbolic polynomial. This follows again from the fact that hermitian

matrices have only real eigenvalues. So as for real zero polynomials, one can

ask whether a hyperbolic polynomial has such a determinantal representa-

tion.

Now note that there is a slight but significant difference to the case of

real zero polynomials. Namely, if M1, . . . ,Mn ∈ Herk(C), then the function

(x0, x1, . . . , xn) 7→ det (x0I + x1M1 + · · ·+ xnMn)

is homogeneous of degree k. That means the polynomial

q = det (x0I + x1M1 + · · ·+ xnMn)

is necessarily of degree k as well. So in contrast to the case of real zero

polynomials, there can be no degree cancellation when computing the deter-

minant. An easy count of parameters thus shows immediately that not every

hyperbolic polynomial can have a determinantal representation as above.

Now let M1, . . . ,Mn ∈ Herk(C) be hermitian matrices and assume that

p = det (I + x1M1 + · · ·+ xnMn) is of degree d. Denote by

p̃ = xd0 · p
(
x

x0

)
the homogenization of p, which is a hyperbolic polynomial. We then find

det (x0I + x1M1 + · · ·+ xnMn) = xk−d0 · p̃,
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i.e. the homogenized matrix polynomial has as its determinant the homoge-

nization of p up to a power of x0. The power is exactly the difference of the

matrix size k and the degree d of p.

Conversely, if the hyperbolic polynomial p̃ has a hermitian determinantal

representation, it has one of size d. Setting x0 = 1 gives a determinantal

representation of p of size d. We summarize this in the following observation:

Observation 3.2.16. Representing hyperbolic polynomials as determinants

of homogeneous linear matrix polynomials is exactly the same as trying to

represent real zero polynomials as determinants of linear matrix polynomials

of smallest possible size (i.e. without degree canceling).

Representing real zero polynomials as determinants of larger matrix poly-

nomials corresponds to representing hyperbolic polynomials after multiplica-

tion with some power of x0.

One can now formulate the Theorem of Helton and Vinnikov, as stated in

Theorem 3.1.1, in the context of hyperbolic polynomials. It then turns out

to be precisely the solution to the so-called Lax Conjecture, as observed by

Lewis, Parrilo and Ramana [28].

Theorem 3.2.17 (Helton & Vinnikov). Let q = R[x0, x1, x2] be a hyperbolic

polynomial of degree d. Then there are M1,M2 ∈ Symd(R) with

q = det (x0I + x1M1 + x2M2) .

3.3 Polynomials without Representations

The upper bounds on the size of matrix polynomials that we obtained in

Section 3.2.1 can be used to show that many real zero polynomials do not

admit a determinantal representation. This was an open question in the work

of Helton and Vinnikov, first solved by Brändén. It turns out that in fact

almost no real zero polynomial has a determinantal representation. We begin

by explaining this fact. The results are from Netzer and Thom [41].

3.3.1 Almost no Polynomial has a Representation

Let R[x]d denote the finite dimensional subspace of polynomials of degree

at most d. We again write Rn,d for the set of all real zero polynomials in
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R[x]d, and Dn,d for the set of polynomials in Rn,d having a determinantal

representation (of any size). We have already seen in Proposition 2.2.9 that

Rn,d is a closed and connected semi-algebraic set, having nonempty interior

in the hyperplane of R[x]d defined by the condition p(0) = 1. We have seen

in Proposition 2.5.4 that Rn,d is a regular set.

Lemma 3.3.1. The set Rn,d ⊆ R[x]d is of semi-algebraic dimension(
d+ n

d

)
− 1.

Proof. This is clear from the fact that Rn,d has nonempty interior in the

hyperplane of R[x]d defined by the condition p(0) = 1.

Theorem 3.3.2. The set Dn,d ⊆ R[x]d is a closed semi-algebraic set of

dimension at most n3d2.

Proof. Consider the semi-algebraic mapping

det : Hnd(C)n → R[x]nd

(M1, . . . ,Mn) 7→ det(I + x1M1 + · · ·+ xnMn).

The set Dn,d is the image of det intersected with R[x]d, by Theorem 3.2.3.

So Dn,d is semi-algebraic and of dimension at most

dimR Hnd(C)n = n3d2.

Now let (pj)j∈N be a sequence of polynomials from Dn,d, converging to some

polynomial p ∈ Rn,d. Let M
(j)
1 , . . . ,M

(j)
n be matrices of size nd from a

determinantal representation of pj. Since R(p) contains some ball around

the origin, and the degree of all pj is at most d, we can assume that each

R(pj) contains some fixed ball around the origin. In view of Lemma 2.1.8, this

means that the eigenvalues and thus the norms of all M
(j)
i are simultaneously

bounded. So we can assume that each M
(j)
i converges to some Mi. By

continuity of det, this yields a determinantal representation of p.

Comparing the dimensions of Rn,d and Dn,d we get the following Corol-

lary:

Corollary 3.3.3. For either d ≥ 4 fixed and large enough values of n, or for

n ≥ 3 fixed and large enough values of d, the generic polynomial in Rn,d does

not have a determinantal representation.
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Note that the result of Corollary 3.3.3 is non-constructive. In the next

sections we construct explicit real zero polynomials without a determinantal

representation.

3.3.2 Convex Cones Examples

Among all real zero polynomials, the ones with R(p) containing a full-

dimensional cone are easiest to use as counterexamples.

Theorem 3.3.4. Let p ∈ R[x] be a real zero polynomial of degree d, defining

a rigidly convex set R(p) that contains a full-dimensional cone, but not a

full line. If n >
(
d+1
2

)
, then p does not have a symmetric determinantal

representation. If n > d2, then p does not have a hermitian determinantal

representation.

Proof. If p had a determinantal representation, then it would have one of size

d, by Theorem 3.2.5. On the other hand, the matrices M1, . . . ,Mn occuring

in such a representation would be linearly independent, by Lemma 3.2.9.

Comparing with the real dimension of the space of symmetric and hermitian

matrices, we get n ≤
(
d+1
2

)
in the symmetric case and n ≤ d2 in the hermitian

case. This contradicts the assumption.

As explained in Remark 3.2.6, Brändén has considered real zero polyno-

mials that arise as shifts of hyperbolic polynomials. He proved that almost

none of them has a determinantal representation (but no explicit example

can be derived from that result). Since the rigidly convex sets of such poly-

nomials contain a full-dimensional cone, we can apply Theorem 3.3.4 to see

that in fact none of them has a determinantal representation.

Example 3.3.5. Consider pn = 1− x2
1 − · · · − x2

n. For n ≥ 3 we find that

p̂n = (x0 + 1)2 − x2
1 − · · · − x2

n

is not realizable as the determinant of a symmetric linear matrix polynomial.

For n ≥ 4 it is not realizable as a hermitian determinant. Note that for n = 3

we can realize it as the determinant of the hermitian matrix(
1 + x0 + x1 x2 + ix3

x2 − ix3 1 + x0 − x1

)
.
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Splitting this matrix into a symmetric and a skew-symmetric part, and build-

ing the symmetric block matrix of size 4 as explained in Lemma 3.2.14, we

get a symmetric determinantal representation of p̂2
3. We will show below that

for any quadratic RZ-polynomial, a high enough power has a determinantal

representation.

Example 3.3.6. We can apply Theorem 3.3.4 also to polynomials that do

not arise as a shifted hyperbolic polynomial. Consider for example the real

zero polynomial

qn = (x1 +
√

2)2 − x2
2 − · · · − x2

n − 1,

whose zero set is a two-sheeted hyperboloid. For n ≥ 5, it does not have a

hermitian determinantal representation, for n = 4 no symmetric determinan-

tal representation.

The above result applies to cases where the number of variables in high,

compared to the degree of the polynomial. The following result applies to

cases where the degree is high, compared to the number of variables.

Theorem 3.3.7. Let p ∈ R[x] be a real zero polynomial of degree d, such

that R(p) does not contain a full line. Further suppose d 6≡ 0, 1, 7 mod 8,

and for each a ∈ Rn, the polynomial pa has only simple zeros (including the

zeros at infinity). If n ≥ 3, then the shifted homogenization p̂ does not have

a symmetric determinantal representation. For n ≥ 4, it does not have a

hermitian representation.

Proof. If p̂ has a determinantal representation, then by applying Theorem

3.2.5 and dehomogenizing we see that p has a representation of size d. Thus

the real space V spanned by the n matrices occuring in such a representa-

tion contains only matrices with simple eigenvalues, by Lemma 2.1.8. The

dimension of V is n, by Lemma 3.2.9. This contradicts the main result of

Friedland, Robbin and Sylvester [12], saying that such spaces can have di-

mension at most 2 and 3, respectively (Theorem B in the symmetric case,

and Theorem D in the hermitian case).

Remark 3.3.8. The work of Friedland, Robbin and Sylvester also contains

results in the case that d ≡ 0, 1 or 7 mod 8, which are more technical. Al-

though they can be used to obtain results in the spirit of Theorem 3.3.7, we

decided not to include them, to keep the exposition more concise.
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Example 3.3.9. Consider again pn = 1 − x2
1 − · · · − x2

n. Theorem 3.3.7 is

another way to see that for n ≥ 3, p̂n does not have a symmetric representa-

tion, and no hermitian one for n ≥ 4. But we can now rise the degree by for

example considering

pn,m := pn(1 + pn)(2 + pn) · · · (m− 1 + pn).

If n ≥ 3 and m is not a multiple of 4, then the shifted homogenization

p̂n,m does not have a symmetric determinantal representation. For n ≥ 4

the same is true with hermitian representations. This contrasts the fact

that taking high enough powers of pn results in a polynomial whose shifted

homogenization has a representation, as we will show in Section 3.4.2.

So far, in all counterexamples R(p) contains a full-dimensional cone. We

can also construct counterexamples withR(p) compact, using Theorem 3.3.2.

3.3.3 Compact Examples

Let again p̂ be the shifted homogenization of a real zero polynomial p. Then p̂

is again a real zero polynomial, and there are explicit such examples without

a determinantal representation, as we have just shown.

We now multiply p̂ with a real zero polynomial defining a ball of radius√
r > 1 around the point (−1, 0, . . . , 0):

qr = p̂ · r

r − 1

(
1− 1

r

(
(x0 + 1)2 + x2

1 + · · ·+ x2
n

))
.

Then R(qr) is clearly compact. Now if qr has a determinantal representation

for some r > 1, it has a representation for all r > 1. This follows easily

from the fact that qr and qs can be transformed to each other by shifting and

scaling.

Now for r → ∞, the polynomials qr converge to p̂, and in view of the

closedness result from Theorem 3.3.2, none of the qr can thus have a de-

terminantal representation. Note that if no power of p̂ has a determinantal

representation, then no power of no qr can have a determinantal representa-

tion, by the same argument.

Example 3.3.10. Take p̂4 = (x0 + 1)2 − x2
1 − x2

2 − x2
3 − x2

4. We find that

2
(
(x0 + 1)2 − x2

1 − x2
2 − x2

3 − x2
4

)(
1− 1

2

(
(x0 + 1)2 + x2

1 + x2
2 + x2

3 + x2
4

))
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does not have a determinantal representation.

Example 3.3.11. Let p̂ ∈ R8,4 be Brändén’s example, constructed from the

Vámos cube (see also Example 3.3.14 below). It is a real zero polynomial of

which no power has a determinantal representation. As above, by multiplying

with a suitably shifted ball, we get a polynomial q with R(q) compact, and

no power of q has a determinantal representation.

Remark 3.3.12. Note that if we multiply any p ∈ Rn,d \ Dn,d with

1− 1

r

(
x2

1 + x2
1 + · · ·+ x2

n

)
,

then for some large enough value of r, the result will be a polynomial without

a determinantal representation, defining a compact set.

3.3.4 Renegar Derivatives

Since the Renegar derivative ∂R(p) of a real zero polynomial is less complex

than p, one could conjecture that ∂R(p) admits a determinantal representa-

tion, if p does. Sanyal [52] has shown that this is true if p is a product of

linear polynomials (so the corresponding spectrahedron is a polyhedron). In

fact, if p = `1 · · · `d with `i(0) = 1, then

∂R(p) =
d∑
i=1

∏
i 6=j

`j = det


`1 + `d `d · · · `d

`d `2 + `d
. . .

...
...

. . . . . . `d
`d · · · `d `d−1 + `d

 ,

and this representation can again be reduced to a monic one. Sanyal has also

shown that the same result does not remain valid for higher Renegar deriva-

tives. He considered hyperbolic polynomials only. As we have explained in

Section 3.2.3, the representation of real zero polynomials is slightly less re-

strictive than the representation of hyperbolic polynomials. So we give an

additional example to show that in fact the Renegar derivative of a repre-

sentable polynomial is not necessarily representable, even in the case of real

zero polynomials.

Example 3.3.13. Consider the real zero polynomial

p := p̂4 = (x0 + 1)2 − x2
1 − x2

2 − x2
3 − x2

4.
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In Section 3.4.2 it will be shown that p2 admits a hermitian determinantal

representation of size 4, which is the smallest possible size. We now claim

that ∂R(p2) does not have a determinantal representation. Indeed we have

∂R(p2) = 2p · ∂R(p) = 4p · (x0 + 1).

If this polynomial had a determinantal representation, then it would have

one of size 3, by Theorem 3.2.5. Evaluating at x0 = 0 yields

q = 1− x2
1 − x2

2 − x3
3 − x2

4 = det(I + x1M1 + x2M2 + x3M3 + x4M4),

for some Mi ∈ H3(C). By Lemma 2.1.8, each nonzero linear combination of

M1, . . . ,M4 has only simple eigenvalues. Indeed there are always two nonzero

eigenvalues coming from the zeros of q, and the zero eigenvalue, since the

matrices are of size 3. But by Theorem D in Friedland, Robbin and Sylvester

[12], such a space of matrices is of dimension at most 3. This contradiction

shows that ∂R(p2) does not admit a hermitian determinantal representation.

3.3.5 Polynomials of which no Power has a Represen-

tation

In this section we turn to the question whether some power of a real zero

polynomial has a determinantal representation. This would be enough for

the desired classification of spectrahedra, since R(p) = R(pr) holds for all

r ≥ 1. However, Brändén has provided an example in [8], constructed from

the Vámos cube, which shows that this is not always possible. We roughly

explain his idea.

Example 3.3.14 (Brändén). Consider the cube in Figure 3.1, the so-called

Vámos cube. Its set of bases B consists of all four element subsets of {1, . . . , 8}
that do not lie in an affine hyperplane. Now define

q :=
∑
B∈B

∏
i∈B

xi,

a degree four polynomial in R[x1, . . . , x8]. It contains as its terms the product

of any choice of four pairwisely different variables, except for the following

five:

x1x4x5x6, x2x3x5x6, x2x3x7x8, x1x4x7x8, x1x2x3x4.
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It was proven by Wagner and Wei [60] that q is hyperbolic (not exactly

as in our definition; they use the direction (1, . . . , 1) instead of (1, 0, . . . , 0)).

Then it is easy to see that

p = q(x1 + 1, . . . , x8 + 1)

is a real zero polynomial. If any power of p had a determinantal representa-

tion, then a power of q would have a homogeneous determinantal representa-

tion. From the occuring matrices one could construct a subspace arrangement

that realizes a multiple of the matroid defined by the Vámos cube. Such re-

alized polymatroids fulfill the Ingleton inequalities. Then the Vámos matroid

itself would fulfill these inequalities, which is known not to be the case.

Figure 3.1:

1

7

2

5

6

4

3

8

We will now give a different criterion, taken from Netzer, Plaumann and

Thom [39], to show that no power of a real zero polynomial has a determi-

nantal representation. It is based on sums of squares decompositions of the

Hermite matrix H(p) from Section 2.2.

Lemma 3.3.15. Let p ∈ R[x] be a real zero polynomial of degree d. Assume

that pr has a determinantal representation of size k:

pr = det (I + x1M1 + · · ·+ xnMn) .

Write x ◦M := x1M1 + · · ·+ xnMn. Then

r · H(p) + (k − rd) · E11 =
(
tr
(
(−x ◦M)i+j−2

))
i,j=1,...,d

.

Here E11 is the matrix with a one in the (1, 1)-entry and zeros elsewhere.
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Proof. For each a ∈ Rn, the trace of (−a ◦M)s is the s-power sum of the

(nonzero) eigenvalues of −a ◦M . These eigenvalues are the inverses of the

zeros of pa, by Lemma 2.1.8, but each such zero gives rise to r many eigen-

values. Since the zeros of pa correspond to the inverses of the zeros of the

opposite polynomial p̃a, the trace of (−a ◦M)s equals the s-power sum of

the zeros of p̃a, multiplied with r. This proves the claim. Note that in the

(1, 1)-entry we need to add k− rd on the left hand side of the equation, since

the trace of the identity matrix of size k is k, and the (1, 1)-entry of H(p) is

d.

Definition 3.3.16. For a matrix polynomial H ∈ Symk (R[x]) we say that

H is a sum of squares (sos), if

H = QtQ

for some l ∈ N and Q ∈ Ml×k (R[x]) .

Note that if H is sos, then H is clearly positive semidefinite at each

point of Rn. Note also that the converse is not true in general. Even in

the case k = 1, there are well known examples in Real Algebra, of globally

nonnegative polynomials that are not sums of squares of polynomials (see for

example Prestel and Delzell [46] or Marshall [32]). Finally recall Proposition

2.2.6 from Section 2.2. It said that p is a real zero polynomial if and only

if its Hermite matrix H(p) is positive semidefinite at each point of Rn. We

now find the following:

Theorem 3.3.17. Let p ∈ R[x] be a real zero polynomial of degree d. If pr

has a determinantal representation of size k, then

H(p) + (k/r − d) · E11

is a sum of squares. Again, E11 is the matrix with a one in the (1, 1)-entry

and zeros elsewhere. In particular, if k = rd, then H(p) is a sum of squares.

Proof. First note that in view of Lemma 3.2.14, we can assume that the

determinantal representation is real symmetric. So let

pr = det (I + x1M1 + · · ·+ xnMn)
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be such a representation of size k. Write P = −x ◦M and denote by Pm
rs the

(r, s)-entry of Pm. Set

Qrs =
(
P 0
rs, . . . , P

d−1
rs

)t ∈ R[x]d.

Then
k∑

r,s=1

QrsQ
t
rs =

(
k∑

r,s=1

P i−1
rs P j−1

rs

)
i,j=1,...,d

=
(
tr(P i−1P j−1)

)
i,j

= r · H(p) + (k − rd) · E11,

by Lemma 3.3.15. Writing the vectors Qrs into the rows of a matrix Q and

dividing by r proves the result.

Remark 3.3.18. We have seen in Theorem 3.2.5 that if the rigidly convex

set R(p) contains a full-dimensional cone, then pr has a determinantal rep-

resentation of size k = rd, if it has any at all. So H(p) is a sum of squares in

that case. Brändén’s counterexample does contain a full-dimensional cone,

since it is a shifted hyperbolic polynomial.

Remark 3.3.19. By Theorem 3.2.3, pr always has a determinantal repre-

sentation of size k = rdn, if it has any at all. Thus H(p) + d(n − 1) · E11 is

sos in that case. Since r cancels out here, one can show that no power has a

determinantal representation, by showing that a single matrix polynomial is

not sos.

Example 3.3.20. It is not hard to compute the Hermite matrix for Brändén’s

polynomial p. Unfortunately it is too complicated to check the sos condition

by hand. If one uses a computer algebra system specialized on sums of

squares, such as the matlab toolbox Yalmip, one obtains that H(p) is not a

sum of squares. The same is true for a close enough smooth approximation

of Brändén’s polynomial, as described in Section 2.5 of Chapter 2. This is

exactly what one expects, since the cone of sums of squares of matrices is

closed. So both the Brändén polynomial and its close smooth approxima-

tions are examples of polynomials, of which no power has a determinantal

representation.

Remark 3.3.21. Note that the sums of squares decomposition we get in

Theorem 3.3.17 is very special. In the case k = rd we indeed find

r · H(p) =
k∑

r,s=1

QrsQ
t
rs
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for certain Qrs ∈ R[x]d with Qrs = Qsr. If we write Qrs,i for the i-th entry of

the vector Qrs, and set

Qi := (Qrs,i)r,s ,

the matrices Qi fulfill the following relations:

Qi = (Q2)
i−1 for i = 1, . . . , d

and

(Q2)
d = −

d∑
i=1

pd−i+1Qi.

Now one can proof that with M := (Qrs,2)r,s we get back

det(I −M) = pr.

This is essentially proven in Theorem 3.4.10 below. A general sum of squares

decomposition of H(p) will however hardly be of that special form. How to

still get back a determinantal representation from a sums of squares decom-

position of the Hermite matrix will be the content of Section 3.4.1 below.

We will show in Theorem 3.4.15 below, that for quadratic real zero poly-

nomials, a high enough power always admits a determinantal representation

of minimal size. In view of Theorem 3.3.17, the Hermite matrix is always

a sum of squares, for quadratic real zero polynomials. This can however be

shown directly. We finish the section with this result.

Example 3.3.22. Let p ∈ R[x] be a quadratic polynomial. Write

p = xtAx+ btx+ 1

with A ∈ Symn(R) and b ∈ Rn. Then p is a real zero polynomial if and only

if bbt − 4A � 0, as is easily checked. We find p̃ = xtAx + btx · t + t2, and so

we compute

H(p) =

(
2 −btx
−btx xt(bbt − 2A)x

)
.

Write bbt − 4A =
∑n

i=1 viv
t
i as a sum of squares of vectors vi ∈ Rn. Set

Q =


1 −1

2
btx

0 1
2
vt1x

...
...

0 1
2
vtnx

 .
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Then one immediately checks

H(p) = 2 ·QtQ.

3.4 Polynomials with Representations

In this section we describe several positive results concerning determinantal

representations of real zero polynomials. We start with a general construction

method, that can be used to construct determinantal representations from

sums of squares decompositions of the Hermite matrix. We then characterize

real zero polynomials of which some power has a representation, in terms of an

algebra having a finite dimensional representation. We finally show that each

real zero polynomial admits a rational linear determinantal representation,

i.e. a representation with denominators.

3.4.1 A General Construction Method

Let p = 1 + p1 + · · · + pd ∈ R[x] be a real zero polynomial of degree d. We

again denote by H(p) the Hermite matrix of p. The following lemma is a

slight adjustment of the main result of Gondard and Ribenboim [13] to our

setup.

Lemma 3.4.1. There is some nonzero homogeneous polynomial q ∈ R[x]

such that

q2 · H(p) = QtQ

for some Q ∈ Mk×d (R[x]) .

Proof. H(p) is positive semidefinite at each point of Rn, so by Gondard

and Ribenboim [13] there is some nonzero polynomial q ∈ R[x] such that

q2H(p) = QtQ for some Q ∈ Mk×d(R[x]). We have to show that we can

choose q to be homogeneous.

Write q = qr + qr+1 + · · ·+ qR, where each qi is homogeneous of degree i,

and pr 6= 0, pR 6= 0. Since the i-th diagonal entry in H(p) is homogeneous of

degree 2(i − 1), each entry in the i-th column of Q has homogeneous parts

only of degree between r + i− 1 and R + i− 1. Let Qmin be the matrix one

obtains from Q by choosing only the homogeneous part of degree r + i − 1

of each entry in each i-th column. Write Q = Qmin + Q̃ and note that all
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entries in the i-th column of Q̃ start with homogeneous parts of degree at

least r + i. We now have

q2H(p) = Qt
minQmin +Qt

minQ̃+ Q̃tQmin + Q̃tQ̃.

By comparing degrees we find

q2
rH(p) = Qt

minQmin,

the desired result.

We will fix a sums of squares representation with denominators as in

Lemma 3.4.1 for the rest of this section. Write r for the degree of the homo-

geneous polynomial q. Again set

p̃ = td · p
(x
t

)
= td + p1t

d−1 + · · ·+ pd ∈ R[x, t].

We consider the R[x]-module

A := R[x, t]/p̃ =
d−1⊕
i=0

R[x] · ti = R[x]d.

We can equip A with a symmetric R[x]-bilinear and R[x]-valued map 〈·, ·〉p.
Indeed forf = (f1, . . . , fd) and g = (g1, . . . , gd) we define

〈f, g〉p := f t
(
q2H(p)

)
g.

Since p̃ is homogeneous, the standard grading of R[x, t] induces a grading on

A. We shift it by r, so it fulfills

deg(ti) = r + i

for i = 0, . . . , d−1. This makes A =
⊕

m∈NAm a graded R[x]-module, where

R[x] is equipped with the standard grading. We next consider multiplication

with t on A. This is a well defined and R[x]-linear map, given by the following

formula:

Lt : A→ A

(f1, . . . , fd) 7→ (−pdfd, f1 − pd−1fd, . . . , fd−1 − p1fd).
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Note that Lt is of degree 1 with respect to the grading, i.e. if f ∈ Am, then

Lt(f) ∈ Am+1. Note also that the representing matrix of Lt with respect to

the standard basis is

Lt =


0 0 0 −pd
1 0 0 −pd−1

0
. . . 0

...

0 · · · 1 −p1

 ,

the so called companion matrix of p. It is well known and easy to see that

det (I − Lt) = p.

Lemma 3.4.2. Lt is self-adjoint with respect to 〈·, ·〉p, i.e.

〈Ltf, g〉p = 〈f,Ltg〉p

holds for all f, g ∈ A.

Proof. We can assume without loss of generality that q = 1. It is enough to

show 〈Ltei, ej〉p = 〈ei,Ltej〉p for all i, j, where ei is the tuple with a one in

the i-th component and zeros elsewhere. For i, j < d this follows from the

fact that H(p) is a Hankel matrix. For i = j = d this is clear from symmetry.

So assume j < i = d. We find

〈Lted, ej〉p = −
d∑
i=1

pd−i+1eiH(p)ej = −
d∑
i=1

pd−i+1Ni+j−2,

where Nk is the k-th Newton sum of p̃. On the other hand we compute

〈ed,Ltej〉p = 〈ed, ej+1〉p = Nd+j−1.

So we have to show

0 =
d∑
i=0

pd−iNi+j−1,

where p0 := 1. This statement is equivalent to

0 =
d∑
i=0

piNk−i,
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where k := d + j − 1. This last equation however follows immediately from

the Newton identities:

kpk +
k−1∑
i=0

piNk−i = 0,

where pk := 0 if k > d.

We now consider the R[x]-linear mapping defined as multiplication by Q:

Q : A→ R[x]k

f 7→ Qf.

If we equip the R[x]-module B = R[x]k with the canonical R[x]-valued bilin-

earform 〈·, ·〉, then Q is an isometry, in the following sense:

〈f, g〉p = 〈Qf,Qg〉.

Lemma 3.4.3. If p is square-free, then Q is injective.

Proof. If Qf = 0, then

0 = 〈Qf,Qf〉 = 〈f, f〉p = q2 · f tH(p)f.

For each a for which pa has only distinct roots, the matrix H(p)(a) is positive

definite. So f(a) = 0 for generic a, and thus f = 0.

From the degree structure of H(p) we see that each entry in the i-th

column of Q is homogeneous of degree r + i − 1. So Q is of degree 0, if we

equip B with the canonical grading. All in all we have the following diagram

of R[x]-linear maps:

R[x]d = A
Q //

Lt

��

B = R[x]k

R[x]d = A
Q // B = R[x]k

We repeat the most important facts:

• Lt is self-adjoint with respect to 〈·, ·〉p and of degree 1 with respect to

the introduced grading on A.

• det (I − Lt) = p.
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• Q is an isometry, and of degree 0.

The following is our main result:

Theorem 3.4.4. Let p be a square-free real zero polynomial. Assume there

is a homogeneous symmetric linear matrix polynomial M of size k, such

that multiplication with M , as a mapping from B to B, makes this diagram

commute:

R[x]d = A
Q //

Lt

��

B = R[x]k

M
��

R[x]d = A
Q // B = R[x]k

Then det (I −M) contains p as a factor.

Proof. For generic a ∈ Rn, the mapping Q(a) is injective. So all eigenvalues

of Lt(a) are also eigenvalues ofM(a). The eigenvalues of Lt(a) are precisely

the zeros of p̂a, i.e. the inverses of the zeros of pa. So q = det(I − M)

vanishes on the zero set of p, by Proposition 2.1.8. Since p is square-free, this

implies the claim, using the fact that irreducible real zero polynomials define

real radical ideals, see Bochnak, Coste and Roy [7], Theorem 4.5.1(v).

Remark 3.4.5. Note that whether there is suchM can be decided by solving

a system of linear equations. Indeed setM = x1M1 + · · ·+xnMn, where the

Mi are symmetric matrices with indeterminate entries. The matrix equation

MQ = QLt can be considered entrywise, and comparison of the coefficients

of the occuring polynomials in x gives rise to a system of linear equations in

the entries of the Mi.

Example 3.4.6. Let p ∈ R[x] be quadratic. Write p = xtAx+ btx+ 1 with

A ∈ Symn(R) and b ∈ Rn. We have seen in Example 3.3.22 that H(p) admits

a sums of squares decomposition if p is real zero, given by the following matrix

Q:

Q =
√

2 ·


1 −1

2
btx

0 1
2
vt1x

...
...

0 1
2
vtnx

 ,

if bbt − 4A =
∑n

i=1 viv
t
i . One now easily checks that there is some homoge-

neous linear matrix polynomial M that makes the diagram commute. One
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takes

M =
1

2
·


−btx vt1x · · · vtnx

vt1x −btx 0 0
... 0

. . . 0

vtnx 0 0 −btx

 .

One also checks easily that

det (I −M) = (1 +
1

2
· btx)n−1 · p

holds.

As an explicit example consider p = (x1 +
√

2)2−x2
2−x2

3−x2
4−x2

5, which

does not admit a determinantal representation. The described procedure now

gives rise to the following linear matrix polynomial:

M =



−
√

2x1 x1 x2 x3 x4 x5

x1 −
√

2x1 0 0 0 0

x2 0 −
√

2x1 0 0 0

x3 0 0 −
√

2x1 0 0

x4 0 0 0 −
√

2x1 0

x5 0 0 0 0 −
√

2x1


and finally

det(I −M) = (1 +
√

2x1)
4 · p.

Example 3.4.7. There are also examples where there is no such M that

makes the diagram commute. Consider the cubic p = (x1− 1)2(x1 + 1)− x2
2.

One computes

H =

 3 x1 3x2
1 + 2x2

2

x1 3x2
1 + 2x2

2 x3
1 + 3x1x

2
2

3x2
1 + 2x2

2 x3
1 + 3x1x

2
2 3x4

1 + 8x2
1x

2
2 + 2x4

2

 = QtQ,

where

Q =


0 x2 a · x1x2

0 −x2 b · x1x2√
2
√

2x1

√
2(x2

1 + x2
2)

1 −x1 x2
1


and a = 1

2
(
√

7 + 1), b = 1
2
(
√

7− 1). The equationMQ = QLt has 12 entries,

each one giving rise to several linear equations, by comparing coefficients of
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polynomials in x. Already the equations obtained by the first two rows of

the equation MQ = QLt are checked to be unsolvable. We want to thank

Rainer Sinn and Cynthia Vinzant for helping us find this example.

3.4.2 Representing Powers of Real Zero Polynomials

In this section we characterize polynomials for which some power admits a

determinantal representation. The approach is as follows. For a given real

zero polynomial p, one constructs a (non-commutative) algebra with involu-

tion, called the generalized Clifford algebra associated with p. We show that

representing some power of p as a determinant is the same as finding a finite

dimensional ∗-representation of the algebra. In the case of quadratic polyno-

mials we can explicitly construct such an algebra representation. This leads

to explicit determinantal representations of powers of quadratic polynomials.

A similar approach has been used for the problem of linearizing forms, by

Heerema [17], Roby [50] and Childs [10], among others. A solution to their

problem implies a determinantal representation for the polynomial, but not

necessarily a hermitian one, and also without the matrix M0 being positive

semidefinite. Further, Pappacena [43] has used an algebra as below to realize

polynomials as minimal polynomials of matrix pencils. From this one can

also deduce determinantal representations, this time even monic, i.e. with

M0 = I, but still not necessarily with all other matrices hermitian. We will

see that the strive for hermitian representations needs some more work in

general.

A Generalized Clifford Algebra

Let p ∈ R[x] be a real zero polynomial of degree d ≥ 1, and

p̃(x0, . . . , xn) := xd0 · p
(
x

x0

)
its homogenization. In the free non-commutative algebra

C〈z〉 = C〈z1, . . . , zn〉

consider the polynomial

ha := p̃(−a1z1 − · · · − anzn, a1, . . . , an),
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for a ∈ Rn. Note that if p = 1 + p1 + · · · + pd is the decomposition of p into

its homogeneous parts, and if we abbreviate a1z1 + · · ·+ anzn by a ◦ z, then

ha = (−1)d(a ◦ z)d + (−1)d−1(a ◦ z)d−1p1(a) + · · · − (a ◦ z)pd−1(a) + pd(a).

Now let J(p) be the two-sided ideal in C〈z〉 generated by all the poly-

nomials ha, with a ∈ Rn. We equip C〈z〉 with the involution defined by

z∗j = zj, for all j. Then J(p) is a ∗-ideal and we can define the involution on

the quotient.

Definition 3.4.8. We call the ∗-algebra

A(p) := C〈z1, . . . , zn〉/J(p)

the generalized Clifford algebra associated with p.

Remark 3.4.9. Note that the ideal J(p) is finitely generated, although we

used infinitely many generators to define it. Write

ha =
∑

α∈Nn,|α|=d

aαqα

for suitable qα ∈ C〈z〉. It is then easy so check that the qα generate the ideal

J(p).

Under a finite dimensional unital ∗-representation of A(p) we will in the

following understand an algebra homomorphism A(p) → Mk(C) for some

k ∈ N, preserving the unit and the involution. We call k the dimension of

the representation. The following is our main result in this section.

Theorem 3.4.10. Let p ∈ R[x] be a real zero polynomial of degree d ≥ 1.

(1) If some power pr has a determinantal representation of size rd, then

A(p) admits a unital ∗-representation of dimension rd.

(2) If p is irreducible and A(p) admits a unital ∗-representation of dimen-

sion k, then k = rd for some r ∈ N, and pr has a determinantal

representation of size rd.
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Proof. For (1) assume pr = det (I + x1M1 + · · ·+ xnMn) for some hermitian

matrices Mj of size rd. Consider the unital ∗-algebra homomorphism

ϕ : C〈z1, . . . , zn〉 → Mrd(C), zi 7→Mi.

For any a ∈ Rn we know by Lemma 2.1.8 that the eigenvalues of a1M1 +

· · ·+ anMn arise from the zeros of pra by the rule λ 7→ − 1
λ
, including possible

zeros at infinity. These eigenvalues are precisely the zeros of the univariate

polynomial p̃(−t, a1, . . . , an), so the minimal polynomial of a1M1+· · ·+anMn

divides p̃(−t, a1, . . . , an). This means ϕ(ha) = 0, so ϕ induces a representa-

tion of A(p) as desired.

For (2) let ϕ : A(p) → Mk(C) be a unital ∗-algebra homomorphism. Set

Mi := ϕ (zi + J(p)) , consider the linear matrix polynomial

M = I + x1M1 + · · ·+ xnMn

and its determinant q = detM. From the defining relations of A(p) we know

p̃(−a1M1 − · · · − anMn, a1, . . . , an) = 0

for all a ∈ Rn. So the eigenvalues of a1M1 + · · ·+ anMn are among the − 1
λ
,

where λ runs through the zeros of pa (including possibly λ = ∞). Lemma

2.1.8 implies that the zeros of q are contained in the zeros of p, and also

deg(q) = k. Since every irreducible real zero polynomial defines a real radical

ideal (which follows for example from Bochnak, Coste and Roy [7] Theorem

4.5.1(v)), the real Nullstellensatz implies that each irreducible factor of q

divides p. So q divides some power of p, and since p is itself irreducible,

q = pr for some r ≥ 1. This now finally implies k = rd.

Remark 3.4.11. One could of course also define the generalized Clifford

algebra as a quotient of the free algebra over the real numbers, instead of the

complex numbers, as we did here. This would allow to characterize symmetric

representations of powers of p. But in view of Lemma 3.2.14, that would only

make sense when one is interested in determining the lowest possible power

for which there exists a symmetric representation. Since the classification of

algebras is often simpler over the complex numbers, we decided not to take

this approach.
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Example 3.4.12. Consider pn = 1 − x2
1 − · · · − x2

n. We find A(pn) defined

via the relations

(a1z1 + · · ·+ anzn)2 = ‖a‖2,

which is the classical Clifford Algebra Cln(C). We can also compute the

finitely many relations described in Remark 3.4.9; they are

z2
i = 1 for i = 1, . . . , n

zizj = −zjzi for i 6= j.

It is well known that

Cln(C) ∼= Mk(C)

for even n and k = 2
n
2 , and

Cln(C) ∼= Mk(C)⊕Mk(C)

for n odd and k = 2
n−1

2 . So Cln(C) admits a ∗-algebra homomorphism to

Mk(C) with k = 2b
n
2
c, for any n. Thus the 2b

n
2
c−1-th power of pn has a

determinantal representation of size 2b
n
2
c. In the case of n = 2m we can use

the Brauer-Weyl matrices to generate the Clifford Algebra, as described in

Brauer and Weyl [9]. Let

1 :=

(
1 0

0 1

)
, 1′ :=

(
1 0

0 −1

)
, P :=

(
0 1

1 0

)
, Q :=

(
0 i

−i 0

)
.

Then consider the hermitian matrices

1′ ⊗ · · · ⊗ 1′ ⊗ P ⊗ 1 · · · ⊗ 1

and

1′ ⊗ · · · ⊗ 1′ ⊗Q⊗ 1 · · · ⊗ 1,

where ⊗ denotes the Kronecker (tensor) product of matrices, the product

is of length m, and both P and Q run through all m possible positions

in this product. The arising 2m = n matrices are hermitian and yield a

determinantal representation of the 2m−1-th power of pn. In the case of n

odd one uses the additional matrix 1′⊗ · · ·⊗ 1′ to construct a representation
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of Cln(C). This yields for example

p2
5 = det


1 + x5 x1 + ix3 x2 + ix4 0

x1 − ix3 1− x5 0 −x2 − ix4

x2 − ix4 0 1− x5 x1 + ix3

0 −x2 + ix4 x1 − ix3 1 + x5


Note that in the odd case there is another representation of Cln(C), given by

the respective negative matrices, which is not unitarily equivalent to the first

one (in contrast to the even case, where these representations are equivalent).

The Quadratic Case

In this section we construct a finite dimensional ∗-representation of A(p),

if p is quadratic. Note that already Pappacena [43] has proven A(p) to be

isomorphic to the Clifford algebra in the quadratic case. We need to be more

subtle, since we are looking for homomorphisms respecting the involution.

We start with a lemma that was also noted by Pappacena, and include the

proof for completeness.

Lemma 3.4.13. If p ∈ R[x] is a quadratic real zero polynomial, then

dimCA(p) ≤ 2n.

Proof. Let V be the real subspace in A(p) spanned by the elements zi+J(p)

and 1. Each element v ∈ V fulfills a real quadratic relation v2 = rv + s. For

v, w ∈ A(p) write v ≡ w if v − w ∈ V. Clearly v2 ≡ 0 for all v ∈ V . We

compute

0 ≡ ((zi + J(p)) + (zj + J(p)))2 ≡ (zizj + J(p)) + (zjzi + J(p)),

so zizj + J(p) ≡ −zjzi + J(p) holds in A(p). This proves that the elements

zi1 · · · zir + J(p)

with i1 < · · · < ir generate A(p) as a vector space, which finishes the proof.

Write a quadratic real zero polynomial p as

p(x) = xtAx+ btx+ 1



68 CHAPTER 3. DETERMINANTAL REPRESENTATIONS

with A ∈ Symn(R) and b ∈ Rn. Then pa(t) = atAa · t2 + bta · t + 1, and the

condition that pa has only real roots is 1
4
atbbta− atAa ≥ 0. So p being a real

zero polynomial is equivalent to

1

4
bbt − A � 0,

and this matrix then has a positive semidefinite symmetric square root.

When we use the Clifford Algebra Cln(C) in the following, we denote its

standard generators by σ1, . . . , σn. They fulfill the relations

σ2
i = 1, σ∗i = σi and σiσj = −σjσi for i 6= j.

We denote by σ the column vector

σ = (σ1, . . . , σn)t.

Proposition 3.4.14. Let p = xtAx+ btx+ 1 ∈ R[x1, . . . , xn] be a quadratic

real zero polynomial. Then there is a unital ∗-algebra homomorphism

A(p)→ Cln(C),

defined by the rule

a1z1 + · · ·+ anzn + J(p) 7→ σt
(

1

4
bbt − A

) 1
2

a+
1

2
bta

for all a ∈ Rn. If 1
4
bbt − A is invertible, this is an isomorphism.

Proof. We abbreviate
(

1
4
bbt − A

) 1
2 by C and σtCa+ 1

2
bta by ca. We denote the

entries of the real symmetric matrix CaatC by qij and compute in Cln(C) :

c2a = σtCaatCσ + btaσtCa+
1

4
(bta)2

=
∑
i,j

σiqijσj + btaσtCa+
1

4
(bta)2

=
∑
i

qii +
∑
i<j

(qij − qji︸ ︷︷ ︸
=0

)σiσj + btaσtCa+
1

4
(bta)2

= tr(CaatC) + btaσtCa+
1

4
(bta)2

= tr(atC2a) + btaσtCa+
1

4
(bta)2
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= at
(

1

4
bbt − A

)
a+ btaσtCa+

1

4
(bta)2

=
1

2
(bta)2 + btaσtCa− atAa

= bta · ca − atAa.

Now we define a unital ∗-algebra homomorphism

ϕ : C〈z1, . . . , zn〉 → Cln(C); a1z1 + · · ·+ anzn 7→ ca.

The ideal J(p) is in our case generated by the polynomials

ha = (a1z1 + · · ·+ anzn)2 − bta · (a1z1 + · · ·+ anzn) + atAa,

so

ϕ(ha) = c2a − bta · ca + atAa = 0.

Thus ϕ is well defined on A(p). In case that 1
4
bbt−A is invertible, ϕ is onto.

So Lemma 3.4.13 finishes the proof, using that the vector space dimension of

Cln(C) is 2n.

Now we can prove the main result from this section.

Theorem 3.4.15. Let p ∈ R[x1, . . . , xn] be a quadratic real zero polynomial.

Then for r = 2b
n
2
c−1, pr has a hermitian determinantal representation of size

2b
n
2
c.

Proof. We have seen in Proposition 3.4.14 that there is a unital ∗-algebra

homomorphism from A(p) to Cln(C). But as already described in Example

3.4.12, Cln(C) admits a unital ∗-algebra homomorphism to Mk(C), with k =

2b
n
2
c. So we can apply Theorem 3.4.10 to finish the proof, noting that the

case where p is reducible is trivial.

As explained in the beginning of Chapter 3, this immediately implies the

following:

Corollary 3.4.16. Let p ∈ R[x] be a quadratic real zero polynomial. Then

R(p) is a spectrahedron.
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Remark 3.4.17. We can compute the determinantal representations in the

setup of Theorem 3.4.15 explicitly. Proposition 3.4.14 gives an explicit mor-

phism from A(p) to Cln(C), and this yields an explicit representation in

Mk(C), using for example the Brauer-Weyl matrices (see Examples 3.4.19

and 3.4.20 below).

Also of interest is the question how many different representations for

a real zero polynomial exist. Helton, Klep and McCullough [18] have for

example characterized equivalent representations in terms of matricial spec-

trahedra, i.e. spectrahedra defined in (Symk(R))n , instead of Rn only. Under

a regularity condition on the polynomial, we see that the representations in

Theorem 3.4.15 can be described completely, up to unitary equivalence.

Theorem 3.4.18. Let p = xtAx+ btx+ 1 ∈ R[x1, . . . , xn] be a quadratic real

zero polynomial for which 1
4
bbt − A is invertible. Set k = 2b

n
2
c.

If pr has a determinantal representation of size 2r, for some r ≥ 1,

then r is a positive multiple of k
2
. After a unitary change of variables, the

representation splits into blocks of size k, each one representing p
k
2 .

If n is even, then any two determinantal representations of p
k
2 of size k

are unitarily equivalent. If n is odd then there are precisely two such repre-

sentations, up to unitary equivalence.

Proof. Note that the regularity condition implies that p is irreducible. Now

let first n be even. From Proposition 3.4.14 we know

A(p) ∼= Cln(C) ∼= Mk(C).

A determinantal representation of pr of size 2r gives rise to a ∗-algebra repre-

sentation of Mk(C) of dimension 2r. From the classification of ∗-subalgebras

of matrix algebras we see that this representation splits into blocks, which

are of size k since Mk(C) is simple. Finally, since every ∗-automorphism of a

matrix algebra is conjugation with a unitary matrix, any two representations

of size k are unitarily equivalent.

Now let n be odd. We have

A(p) ∼= Cln(C) ∼= Mk(C)⊕Mk(C),

and this algebra has now precisely two irreducible ∗-representations up to

unitary equivalence, both of size k. They are for example given by the Brauer-

Weyl matrices and their negatives.
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We finish our work with two explicit examples for the above results.

Example 3.4.19. Consider qn = (x1 +
√

2)2 − x2
2 − · · · − x2

n − 1. Writing

qn = xtAx+ btx+ 1 we see

1

4
bbt − A = I.

The above described homomorphism A(qn)→ Cln(C) is given by the rule

z1 + J(qn) 7→ σ1 +
√

2

zi + J(qn) 7→ σi for i = 2, . . . , n.

We can substitute the Brauer-Weyl matrices (or their negatives) for the σj
and obtain one or two different representations, depending on whether n is

even or odd. Every other representation of some power is equivalent to a

block sum of these minimal representations (and possibly trivial blocks, by

Theorem 3.2.5). An explicit example of a minimal representation of q2
5 is

given by the following linear matrix polynomial:
1 +
√

2x1 + x5 x1 + ix3 x2 + ix4 0

x1 − ix3 1 +
√

2x1 − x5 0 −x2 − ix4

x2 − ix4 0 1 +
√

2x1 − x5 x1 + ix3

0 −x2 + ix4 x1 − ix3 1 +
√

2x1 + x5

 .

Example 3.4.20. Consider p̂n = (x0 + 1)2 − x2
1 − · · · − x2

n. Writing p̂n =

xtAx+ btx+ 1 we see

1

4
bbt − A =

(
0 0

0 In

)
,

and the homomorphism A(p̂n)→ Cln+1(C) is given by the rule

z0 + J(p̂n) 7→ 1, zi + J(p̂n) 7→ σi for i = 1, . . . , n.

As above this leads to explicit representations, for example

det


1 + x0 x1 + ix3 x2 + ix4 0

x1 − ix3 1 + x0 0 −x2 − ix4

x2 − ix4 0 1 + x0 x1 + ix3

0 −x2 + ix4 x1 − ix3 1 + x0

 = p̂2
4.
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3.4.3 Rational Representations

We finish the first part of this work by a result on rational determinantal

representations. If one allows for denominators, then in fact every real zero

polynomial admits a symmetric linear determinantal representation. This

is in particular interesting, since the representations provide an algebraic

certificate for the geometric property of being real zero. On the other hand,

the connection to spectrahedra is lost, when introducing denominators.

Let p be a square-free real zero polynomial. Then clearly pa has only

simple roots, for generic a ∈ Rn. This implies thatH(p)(a) is positive definite

for generic a, by Proposition 2.2.4. H(p) is thus invertible over R(x). Let

again Lt denote the companion matrix of p, as in Section 3.4.1.

Theorem 3.4.21. Let p ∈ R[x] be a square-free real zero polynomial. Let

q ∈ R[x] \ {0} be homogeneous and Q ∈ Mk×d (R[x]) as in Lemma 3.4.1, i.e.

with

q2 · H(p) = QtQ.

Set

M := q−2QLtH(p)−1Qt.

Then M is symmetric, rational, homogeneous of degree 1, and

det(I −M) = p.

Proof. Abbreviate H(p) by H and Lt by L. By Sylvesters determinant cri-

terion we have

det(Ik −M) = det(Ik − q−2QLH−1Qt) = det(Id − q−2LH−1QtQ)

= det(Id − L) = p.

We find

Mt = q−2QH−tLtQt = q−2QLH−tQt =M,

where we have used LtH = HL, which is Lemma 3.4.2. SoM is symmetric.

Now let r denote the degree of q. By the degree structure of q2 ·H we find

Q(λa) = Q(a) · diag(λr, λr+1, . . . , λr+d−1)

H(λa) = diag(λ0, . . . , λd−1)H(a)diag(λ0, . . . , λd−1)
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L(λa) = diag(λd, . . . , λ1)L(a)diag(λ−d+1, λ−d+2 . . . , λ0)

for all a ∈ Rn and λ 6= 0. So for all a and λ for which the following expressions

are defined, we have

M(λa)

= λ−2rq(a)−2Q(a)diag(λr, . . . , λr+d−1)diag(λd, . . . , λ)L(a)diag(λ−d+1, . . . , λ0)

· diag(λ0, . . . , λ−d+1)H−1(a)diag(λ0, . . . , λ−d+1)diag(λr, . . . , λr+d−1)Qt(a)

= λ−2rq(a)−2Q(a)λr+dL(a)λ−d+1H−1(a)λrQt(a)

= λ · M(a).

This shows that M is homogeneous of degree 1, and finishes the proof.

Remark 3.4.22. In Theorem 3.4.21 we obtain a representation

p = det(I −M)

for some symmetric M with M(λa) = λM(a) for all a, λ. From such a

representation it immediately follows that p is a real zero polynomial. So

for each real zero polynomial there exists an algebraic certificate for the

geometric real zero property.

Example 3.4.23. Consider p = 1− x2
1 − · · · − x2

n. We find

H(p) = QtQ

with

Q =


√

2 0

0
√

2x1

0
...

0
√

2xn

 .

This produces

M =


0 x1 · · · xn
x1

... 0

xn

 .
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Example 3.4.24. Consider p = (x1 + 1)2 − x2
2 − x2

3 − x2
4. We have

H(p) =

(
2 −2x1

−2x1 2(x2
1 + x2

2 + x2
3 + x2

4)

)
= QtQ

with

Q =


√

2 −
√

2x1

0
√

2x2

0
√

2x3

0
√

2x4

 .

We get

M =


−x1 x2 x3 x4

x2 − x1x2
2

x2
2+x2

3+x2
4
− x1x2x3

x2
2+x2

3+x2
4
− x1x2x4

x2
2+x2

3+x2
4

x3 − x1x2x3

x2
2+x2

3+x2
4
− x1x2

3

x2
2+x2

3+x2
4
− x1x3x4

x2
2+x2

3+x2
4

x4 − x1x2x4

x2
2+x2

3+x2
4
− x1x3x4

x2
2+x2

3+x2
4
− x1x2

4

x2
2+x2

3+x2
4

 .
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Chapter 4

Definitions and First Results

4.1 Definitions

In the first part of this work we considered spectrahedra. Recall the defini-

tion: if M = M0 + x1M1 + · · · + xnMn is a (hermitian or symmetric) linear

matrix polynomial, then

S(M) = {a ∈ Rn | M(a) � 0}

is a spectrahedron. Until now we assumed linear matrix polynomials to be

monic, i.e. M0 = I to hold. This just meant restricting to spectrahedra

containing the origin in the interior, as we have explained in Section 1.3. We

will now drop this assumption, i.e. allow for arbitrary hermitian/symmetric

matrices M0.

We have seen that being a spectrahedron is quite a strong property for

a set. Beyond being convex, closed and semi-algebraic, there are more nec-

essary conditions. The most important one is rigid convexity, that was dis-

cussed in detail. It in fact already implies all the other properties stated

in Section 1.3, like for example having exposed faces and being basic closed

semi-algebraic.

We have also seen that each polyhedron is a spectrahedron. Now recall

the well-known fact that any projection of a polyhedron, in fact any linear

image of a polyhedron, is again a polyhedron. Interestingly, the same is not

true for spectrahedra, as it turns out. We look at the following two easy

examples.

79
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Example 4.1.1. Consider

S = {(a1, a2, a3, a4) ∈ R4 | a2
1 ≤ a3, a

2
2 ≤ a4, a

2
3 + a2

4 ≤ 1}.

All three conditions defining S are easily seen to be spectrahedral, and so S is

a spectrahedron. Note that S is even compact. Now consider the projection

p: R4 → R2; (a1, a2, a3, a4) 7→ (a1, a2).

We find

p(S) = {(a1, a2) | a4
1 + a2

2 ≤ 1},

which is not a spectrahedron, as seen in Example 2.1.6.

Example 4.1.2. Consider

S = {(a1, a2) | 0 ≤ a1, 0 ≤ a2, 1 ≤ a1a2}.

S is definable via the linear matrix polynomial

M =

(
a1 1

1 a2

)
,

and is thus a spectrahedron. Note that S is not compact. If we now project

S onto the first coordinate, we obtain the set

T = (0,∞) ⊆ R.

This set is not even closed, and thus not a spectrahedron.

From the viewpoint of optimization however, the linear image of a spec-

trahedron is still well manageable. Instead of optimizing a linear function

over the image, one optimizes the pulled-back function (which is still linear)

over the spectrahedron. One might however get a larger number of variables

in the optimization problem.

So we make the following definition:

Definition 4.1.3. A set S ⊆ Rn is called a spectrahedral shadow, if there

is an affine linear map L : RN → Rn and a spectrahedron T ⊆ RN with

S = L(T ).
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Remark 4.1.4. The name spectrahedral shadow is quite new, and seems to

appear first in Rosalski and Sturmfels [51]. Earlier, spectrahedral shadows

have been called projections of spectrahedra or semidefinitely representable

sets. Quite often they are in fact defined as standard projections of spectra-

hedra only, i.e. images under a standard projection map

Rn × Rr → Rn; (a, b) 7→ a.

Spectrahedral shadows then have the following form:

{a ∈ Rn | ∃b ∈ Rr M(a, b) � 0} ,

where M is a linear matrix polynomial. The following easy argument from

Gouveia and Netzer [14] shows that passing from standard projections to

arbitrary affine linear maps does not enlarge the class of sets.

Lemma 4.1.5. If S has non-empty interior and is the image of a spectrahe-

dron T under an affine linear map, then S is also a canonical projection of

a spectrahedron T ′. Furthermore, if T is definable by a strictly feasible linear

matrix polynomial, then so is T ′.

Proof. Let T = {c ∈ RN | M(c) � 0} be a spectrahedron, L : RN → Rn

an affine linear map and S = L(T ). We can furthermore restrict L to be

linear, since translations of projections of spectrahedra are still projections

of spectrahedra, even in the restricted sense. We also know that L is onto,

since S has nonempty interior. By reordering the variables we can assume

that L =
(
L1 L2

)
, where L1 is a n × n non-singular matrix. We can now

consider the spectrahedron

T ′ =
{
c ∈ RN | M(L−1

1 (c1, . . . , cn)− L−1
1 L2(cn+1, ..., cm), cn+1, ..., cN) � 0

}
.

The projection of T ′ onto the first n variables equals S. Finally, if M is

strictly feasible, then the defining linear matrix polynomial of T ′ is easily

seen to be strictly feasible as well.

Note that there are two obvious properties of spectrahedral shadows: they

are convex, and they are semi-algebraic. The first property is clear, the

second follows from the so-called Projection Theorem for semi-algebraic sets,

which is a consequence of quantifier elimination in the theory of real closed
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fields (explained for example in Prestel and Delzell [46]). So far, no more

necessary conditions are known. In fact Helton and Nie [19, 20] conjecture

that each convex semi-algebraic set is a spectrahedral shadow.

There are again certain elementary constructions that retain the property

of being a spectrahedral shadow. For example, the intersection, the cartesian

product and the Minkowski sum of two spectrahedral shadows is again a

spectrahedral shadow. Also the inverse image of a spectrahedral shadow

under an affine linear map is a spectrahedral shadow. All of these statements

are easily checked. Some more complicated results are proven in the sequel.

We finish this section by some results that we will need in the following.

They are also interesting for themselves. The first lemma is for example

proven in Ramana and Goldman [47], Theorem 1. We sketch the easy proof.

Lemma 4.1.6. If f : Rs → Rn is a quadratic polynomial map, then the

convex hull of its image

conv (f(Rs))

is a spectrahedral shadow.

Proof. First consider the map

f : Rs → Syms(R)× Rs, a 7→ (ata, a).

One checks that

conv (f(Rs)) =

{
(U, a) |

(
U a

at 1

)
� 0

}
.

So this is even a spectrahedron. Now for arbitrary f , the convex hull of the

image is just an affine linear image of conv (f(Rs)).

For two symmetric matrices A = (aij), B = (bij) ∈ Symk(R) we define

A •B := tr(AB) =
∑
i,j

aijbij

This defines an inner product on Symk(R). In [35], Section 4.1.1, Nemirovski

proves the following result.
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Proposition 4.1.7. Let M = M0 + x1M1 + · · ·+ xnMn + y1N1 + · · ·+ yrNr

be a k-dimensional strictly feasible symmetric linear matrix polynomial. Let

S := {a ∈ Rn | ∃b ∈ Rr M(a, b) � 0}

be the projection of the spectrahedron defined by M, and let

S◦ := {` ∈ R[x]1 | ` ≥ 0 on S}

denote the convex cone of affine linear polynomials nonnegative on S. Then

S◦ = {l0 + l1x1 + · · ·+ lnxn | ∃U ∈ Symk(R) : U � 0, U •M0 ≤ l0,

U •Mi = li for i = 1, . . . , n,

U •Nj = 0 for j = 1, . . . , r}.

In particular, S◦ is again a spectrahedral shadow.

The result follows from the duality theory of conic programming, and is

thus essentially a separation argument. The set S◦ is called the polar of S in

Nemirovski’s work. A key observation is that, for our purposes, the condition

that M is strictly feasible is not necessary.

Lemma 4.1.8. Let S ⊆ Rn be a spectrahedral shadow. Then

S◦ = {` ∈ R[x]1 | ` ≥ 0 on S}

is again a spectrahedral shadow.

Proof. Let S be the linear image of the spectrahedron T . We will first assume

that S has nonempty interior in Rn. By replacing the ambient space of T

by the affine hull of T we can also assume that T has nonempty interior.

Note that for a spectrahedron, having nonempty interior is equivalent to

being definable by a strictly feasible linear matrix polynomial, as explained

in Section 1.3. Lemma 4.1.5 now shows that we can apply Proposition 4.1.7,

since S is the standard projection of a strictly feasible spectrahedron.

If S has empty interior, let V denote the affine hull of S. Then for

` ∈ R[x]1 the condition ` ≥ 0 on S is equivalent to `|V ≥ 0 on S. This shows

that S◦ is the inverse image of a spectrahedral shadow under a linear map.

Such sets are easily seen to be spectrahedral shadows as well.

In the next section we review the most important basic tools for checking

whether a set is a spectrahedral shadow. They are mostly based on sums of

squares representations of linear polynomials, and due to Lasserre, Parrilo et

al.
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4.2 Lasserre Relaxations

In this section we want to explain Lasserre’s construction of spectrahedral

shadows. Let again R[x] denote the ring of real polynomials in n variables.

By R[x]d we denote the finite dimensional vector space of polynomials of

degree at most d. For a given finite tuple of polynomials p = (p1, . . . , pm) we

consider the basic closed semi-algebraic set defined by p:

S(p) = {a ∈ Rn | p1(a) ≥ 0, . . . , pm(a) ≥ 0} .

Of course S(p) is not necessarily convex, but we are interested in checking

whether the convex hull

conv
(
S(p)

)
or the closed convex hull

conv
(
S(p)

)
is a spectrahedral shadow. The basic tool for this is due to Lasserre [27].

First consider the quadratic module QM(p) generated by p1, . . . , pm. It

consists of all polynomials one obtains from p1, . . . , pm by multiplying with

sums of squares and adding. Formally, we define

QM(p) :=
{
σ0 + σ1p1 + · · ·+ σmpm | σi ∈

∑
R[x]2

}
.

Here
∑

R[x]2 denotes the set of sums of squares of polynomials. Note that

QM(p) is a convex cone in the vector space R[x]. It is even closed under

multiplication with squares of polynomials. Note also that all polynomials

from QM(p) are clearly nonnegative as functions on S(p).

For our purpose we consider truncated parts of the quadratic module

QM(p). Let d ∈ N be a nonnegative integer. Then define

QM(p)d :=
{
σ0 + σ1p1 + · · ·+ σmpm ∈ QM(p) | deg(σ0), deg(σipi) ≤ d

}
.

So QM(p)d is a convex cone in R[x]d. It in fact consists of those elements of

QM(p) which are obviously in R[x]d, since each term σipi in the representation

is. It is the crucial point in the definition of QM(p)d that the degree of each

term is bounded, and not only the degree of the resulting polynomial. So

QM(p)d can and will be strictly smaller than QM(p) ∩ R[x]d in general. We

will see however that precisely the degree bounds make QM(p)d useful for

our purpose.
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First we consider the dual cone of QM(p)d. It consists of all (normalized)

linear forms on R[x]d that are nonnegative on QM(p)d:

QM(p)∨d :=
{
ϕ : R[x]d → R linear | ϕ ≥ 0 on QM(p)d, ϕ(1) = 1

}
.

The dual space R[x]∗d of R[x]d is clearly a finite dimensional vector space. For

example, when R[x]d is equipped with the basis consisting of all monomials

xα := xα1
1 · · ·xαn

n , where |α| = α1 + · · ·+ αn ≤ d,

then each ϕ ∈ R[x]∗d can be identified with the tuple of its values on this

basis:

ϕ = (ϕ(xα))|α|≤d .

When making this identification, we see that QM(p)∨d ⊆ R[x]∗d is in fact a

spectrahedron. This result has become quite common in the meantime. It

is also explained in Lasserre [26], Marshall [32] or Schweighofer [57]. It uses

the imposed degree bounds in a crucial way.

Lemma 4.2.1. The set QM(p)∨d ⊆ R[x]∗d is a spectrahedron.

Proof. We set p0 = 1. Now an element ϕ ∈ R[x]∗d belongs to QM(p)∨d if and

only if ϕ(1) = 1 and

ϕ(h2pi) ≥ 0

for all i = 0, 1, . . . ,m and all h ∈ R[x]ki
, where ki is the integer part of

1
2
(d− deg(pi)). The above condition can be transformed to∑

|α|,|β|≤ki

hαhβ · ϕ
(
xα+β · pi

)
≥ 0,

where the hα ∈ R are the coefficients of the polynomial h. So ϕ belongs to

QM(p)∨d if and only if ϕ(1) = 1 and the matrices(
ϕ(xα+β · pi)

)
α,β

are positive semidefinite, for all i. Note that the rows and columns of the

above matrix are understood to be indexed by all elements α ∈ Nn with

|α| ≤ ki. These matrices are clearly symmetric, and the entries are linear

polynomials in the values ϕ(xα). This completes the proof.
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Now Lasserre’s idea from [27] is to project QM(p)∨d to Rn by the rule

ϕ 7→ (ϕ(x1), . . . , ϕ(xn)) .

We denote the resulting set by K(p)d :

K(p)d :=
{

(ϕ(x1), . . . , ϕ(xn)) | ϕ ∈ QM(p)∨d
}
.

This set is often called the d-th Lasserre relaxation of S(p). Lasserre shows

that the spectrahedral shadows K(p)d form a decreasing sequence of outer

approximations of conv
(
S(p)

)
, and he gives sufficient conditions for this

sequence to terminate at conv
(
S(p)

)
.

We however want to give a slightly different definition of the Lasserre

relaxation, which seems more descriptive to us. We need some more work to

explain our definition.

Lemma 4.2.2. For any tuple p = (p1, . . . , pm) of polynomials, the convex

cone

QM(p)d ⊆ R[x]d

is a spectrahedral shadow.

Proof. We show that QM(p)d is the image of some Rs under a quadratic

polynomial map, and apply Lemma 4.1.6. Consider the mapping

R[x]k0 × R[x]k1 × · · · × R[x]km → R[x]d

(h0, . . . , hm) 7→ h2
0 + h2

1p1 + · · ·+ h2
mpm.

Here, the ki are defined as in the proof of Lemma 4.2.1. By definition, QM(p)d
is the convex hull of the image of that map.

Remark 4.2.3. One could also use Lemma 4.2.1 together with Lemma 4.1.8

to show that the double dual of QM(p)d is a spectrahedral shadow. The

double dual equals the closure, and quite often the cone QM(p)d turns out

to be close anyway (see for example the proof of Theorem 4.2.5).

We now give our modified definition of a Lasserre relaxation. It appears

in Gouveia and Netzer [14]. For any d ∈ N, it is the nonnegativity set of

all linear polynomials having a sums of squares representation with degree

bound d, i.e. belonging to QM(p)d.
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Definition 4.2.4. Let p = (p1, . . . , pm) be a tuple of polynomials. Then

L(p)d :=
{
a ∈ Rn | `(a) ≥ 0 for all ` ∈ QM(p)d ∩ R[x]1

}
is called the d-th Lasserre relaxation of p (or slightly inexact, of S(p)).

The following result subsumes the most important results concerning

Lasserre relaxations. Parts (iii) and (iv) are like in Lasserre [27], part (v) is

from Netzer, Plaumann and Schweighofer [38].

Theorem 4.2.5. Let p = (p1, . . . , pm) be a tuple of polynomials and let

S = S(p). Then the following is true:

(1) Each set L(p)d is a closed spectrahedral shadow.

(2) If S has nonempty interior, one has K(p)d = L(p)d. So our alternative

relaxation coincides with the original one up to closures.

(3) conv (S) ⊆ L(p)d+1 ⊆ L(p)d holds for all d ∈ N.

(4) If QM(p)d contains all linear polynomials that are nonnegative on S,

then conv (S) = L(p)d. In particular, conv (S) is a spectrahedral shadow.

(5) If S has nonempty interior and conv(S) = L(p)d, then QM(p)d contains

all linear polynomials nonnegative on S.

Proof. For (1) use Lemma 4.2.2 to see that

Md := QM(p)d ∩ R[x]1

is a spectrahedral shadow. Thus by Lemma 4.1.8 also M◦
d is a spectrahedral

shadow. If we understand points a ∈ Rn as linear polynomials on R[x]1, by

the rule ` 7→ `(a), we see that

M◦
d ∩ Rn = L(p)d

is also a spectrahedral shadow. Closedness of L(p)d is clear.

For (2) let ϕ ∈ QM(p)∨d and ` ∈Md. Then

0 ≤ ϕ(`) = ` (ϕ(x1), . . . , ϕ(xn)) ,



88 CHAPTER 4. DEFINITIONS AND FIRST RESULTS

which proves K(p)d ⊆ L(p)d, and thus the inclusion ”⊆” from the claim. For

”⊇” let ` ∈ R[x]1 be nonnegative on K(p)d. This means

0 ≤ ` (ϕ(x1), . . . , ϕ(xn)) = ϕ(`)

for all ϕ ∈ QM(p)∨d . So ` belongs to the double dual cone of QM(p)d (note

that the condition ϕ(1) = 1 is non-restrictive; see the little trick in Marshall

[31], proof of Theorem 3.1). The double dual cone is however well known to

be the closure of QM(p)d. On the other hand, if S has nonempty interior,

QM(p)d is closed. This is proven for example in Marshall [32], Lemma 4.1.4,

or Powers and Scheiderer [45], Proposition 2.6. So we get ` ∈ QM(p)d, and

this implies ` ≥ 0 on L(p)d. Since every linear polynomial that is nonnegative

on K(p)d is also nonnegative on L(p)d, this proves ”⊇”.

Statement (3) is clear, since every element from Md is clearly nonnegative

on S. Statement (4) is also clear. For (5) finally let ` ∈ R[x]1 be nonnegative

on S. By assumption ` is also nonnegative on L(p)d. In fact we only need

that ` is nonnegative on K(p)d. By arguing as in the proof of (2) we see

` ∈ QM(p)d, using the closedness again.

Remark 4.2.6. The property that some QM(p)d contains all linear polyno-

mials nonnegative on S is called the Putinar-Prestel bounded degree represen-

tation property for linear polynomials in Lasserre [27]. In case the quadratic

module is replaced by a preordering (which we don’t consider here), it is called

the Schmüdgen bounded degree representation property. Necessary geometric

conditions for this property to hold are examined in Chapter 5 below.

A related but slightly different relaxation construction has been proposed

in Gouveia, Parrilo and Thomas [15]. Their relaxations are called theta body

relaxations. We roughly explain the idea. The starting point is not a basic

closed semi-algebraic set S(p), but a real variety defined by some ideal I ⊆
R[x]. For fixed d ∈ N one considers the set of all polynomials that are a sums

of squares of degree 2d modulo the ideal I:∑
(d, I) =

{
f ∈ R[x] | f − σ ∈ I for some σ ∈

∑
R[x]2d

}
.

The convex cone
∑

(d, I) is an analogue of QM(p)2d from above. Now the

d-th theta body of the real variety VR(I) ⊆ Rn is

TH(I)d =
{
a ∈ Rn | `(a) ≥ 0 for all ` ∈

∑
(d, I) ∩ R[x]1

}
.
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So the theta bodies are analogues of the Lasserre relaxations L(p)d. The theta

bodies can be used to approximate the convex hull of VR(I) from above. A

similar result as Theorem 4.2.5 (i), (iii), (iv) and (v) is true. The condition

that S has nonempty interior has to be replaced by the condition that I is a

real radical ideal. We will however not pursue this construction any further,

and restrict to the Lasserre relaxations.

We finish this section with two explicit examples. The first example is

from Lasserre [27].

Example 4.2.7. Consider the set S = {(a1, a2 ∈ R2 | a4
1 + a4

2 ≤ 1} . We have

considered this set before in Example 2.1.6 and Example 4.1.1. We already

know that S is a spectrahedral shadow, but not a spectrahedron. We will

show how Lasserre’s construction applies here, to give another justification

that S is a spectrahedral shadow.

We consider the point (a, 4
√

1− a4), with a ∈ [0, 1] (it works similar for

all other points on the boundary of S). Any linear polynomial nonnegative

on S and zero at this point is a positive multiple of

`a = 1− a3x1 −
(

4
√

1− a4
)3

x2.

See Figure 4.1 for a picture of S and the zero set of `a. One checks that

f := `a − λ(1 − x4
1 − x4

2) is globally nonnegative, for some λ > 0. This

can either be done elementary, or by the Karush-Kuhn-Tucker optimality

conditions from convex optimization. Since f is globally nonnegative and of

degree 4, it is a sums of squares. So `a ∈ QM(1− x4
1 − x4

2)4, and S is thus a

spectrahedral shadow.

Figure 4.1:

The second example is due to João Gouveia, and published in Gouveia

and Netzer [14].
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Example 4.2.8. Let S(p) ⊆ R2 be defined by

p1 = x2, p2 = 1− x2, p3 = x2 − x3
1, p4 = 1 + x1.

We claim that L(p)3 is the convex hull of S(p)∪{(1/3, 0)}. See Figure 4.2 for

the sets S(p) and L(p)3. To prove the claim, let C = conv(S(p)∪{(1/3, 0)}).
Then C is defined by the infinitely many affine linear inequalities

{x2 ≥ 0, 1− x2 ≥ 0, 1 + x1 ≥ 0, x2 − 3a2x1 + 2a3 ≥ 0 | a ∈ [1/2, 1]},

since the polynomial `a := x2−3a2x1 +2a3 defines the hyperplane tangent to

the curve x2 = x3
1 at the point (a, a3). To prove L(p)3 ⊆ C it is thus enough

to show that the polynomials `a belong to QM(p)3 for all a ≥ 1/2. To see

this, note that

`a = (
√

2a− 1(x1 − a))2 + (x2 − x3
1) + (x1 − a)2(x1 + 1).

To prove the inclusion C ⊆ L(p)3, using the fact that L(p)3 is convex and

contains S(p), it is enough to show that (1/3, 0) ∈ L(p)3. Since translations

commute with taking Lasserre relaxations, we will instead consider the set

of polynomials

p′1 = x2, p
′
2 = 1− x2, p

′
3 = x2 − x3

1 − x2
1 −

1

3
x1 −

1

27
, p′4 = x1 +

4

3
,

obtained from the pi by replacing x1 by x1 + 1/3, and prove that (0, 0) ∈
L(p′)3. Suppose that is not the case. Then there must exist ε, µ > 0 such

that ` = x2 − µx1 − ε belongs to QM(p′)3. This means

` = σ0 + σ1x2 + σ2 (1− x2) + c

(
x2 − x3

1 − x2
1 −

1

3
x1 −

1

27

)
+ σ4

(
x1 +

4

3

)
,

where c is simply a nonnegative constant, since deg(p′3) = 3. Note that

σ0, σ1, σ2 and σ4 have at most degree 2.

Let σ4 = a1x
2
1 + a2x1 + a3 + a4x

2
2 + a5x1x2 + a6x2. In order to cancel the

x3
1 term of the entire expression, we must have a1 = c. The coefficient of x2

1

will then be

a− c+
4

3
c+ a2,

where a is a nonnegative number, arising as the sum of the coefficients of x2
1

in σ0 and σ2. This implies a2 ≤ −c/3, which by using the fact that σ4 is a
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nonnegative polynomial, implies a3 ≥ c/36 (just set x2 = 0 in σ4 and use

that the discriminant is nonpositive). Now the constant coefficient has to be

b− 1

27
c+

4

3
a3,

where b is the nonnegative constant term of σ0 + σ2. Since this must be −ε,
we have

− 1

27
c+

4

3
a3 < 0,

which since a3 ≥ c/36 is impossible. Hence ` /∈ QM(p′)3, and (1/3, 0) is in

L(p)3 as intended. We see that L(p)3 does not coincide with S(p) in this

example. It will follow from the results in Chapter 5 that indeed none of the

Lasserre relaxations can coincide with S(p) here.

Figure 4.2:

4.3 Convex Hulls

In the last section we saw how Lasserre’s method can show that convex

hulls of basic closed semi-algebraic sets are spectrahedral shadows. This

section contains two parts. First we show that the convex hull of the union

of finitely many spectrahedral shadows is again a spectrahedral shadow. This

generalizes and simplifies a result of Helton and Nie [19], where the additional

assumption of boundedness was imposed upon the sets. The result appears

in Netzer and Sinn [40]. In the second part we give a unified account of

several results on convex hulls of images of polynomial maps. It summarizes
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and simplifies results that are spread across the literature. The overview also

appears in Gouveia and Netzer [14].

We begin by proving that the class of spectrahedral shadows is closed

under taking conic hulls.

Proposition 4.3.1. If S ⊆ Rn is a spectrahedral shadow, then so is

cone(S) = {λ · a | a ∈ S, λ ≥ 0} ,

the conic hull of S.

Proof. We can assume that S has nonempty interior, and use Lemma 4.1.5

to write

S =

{
a ∈ Rn | ∃b ∈ Rr : M0 +

n∑
i=1

aiMi +
r∑
j=1

bjNj � 0

}
,

with suitable hermitian or symmetric k × k-matrices Mi, Nj. Then with

C := {a ∈ Rn |∃λ, s ∈ R, b ∈ Rr : λM0 +
n∑
i=1

aiMi +
r∑
j=1

bjNj � 0 ∧

n∧
i=1

(
λ ai
ai s

)
� 0}

we have C = cone(S) (note that C is a spectrahedral shadow).

To see ”⊆” let some a fulfill all the conditions from C, first with some

λ > 0. Then ã := 1
λ
· a belongs to S, using the first condition only. Since

a = λ · ã, a ∈ cone(S). If a fulfills the conditions with λ = 0, then a = 0, by

the last n conditions in the definition of C. So clearly also a ∈ cone(S).

For ”⊇” take a ∈ cone(S). If a 6= 0 then there is some λ > 0 and ã ∈ S
with a = λ · ã. Now there is some b ∈ Rr with M0 +

∑
i ãiMi +

∑
j bjNj � 0.

Multiplying this equation with λ shows that a fulfills the first condition in

the definition of C. But since λ > 0, the other conditions can clearly also

be satisfied with some big enough real s. So a belongs to C. Finally, a = 0

belongs to C too.

Remark 4.3.2. The additional n conditions in the definition of C avoid

problems that could occur in the case λ = 0. This is the main difference to

the approach of Helton and Nie [19].
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Now the following corollary is straightforward:

Corollary 4.3.3. If S1, . . . , St ⊆ Rn are spectrahedral shadows, then the

convex hull

conv(S1 ∪ · · · ∪ St)

is also a spectrahedral shadow.

Proof. Consider S̃i := Si × {1} ⊆ Rn+1, and let Ki denote the conic hull of

S̃i in Rn+1. All S̃i and therefore all Ki are spectrahedral shadows. Thus the

Minkowski sum K := K1 + · · ·+Kt is also a spectrahedral shadow. Now one

easily checks

conv(S1 ∪ · · · ∪ St) = {a ∈ Rn | (a, 1) ∈ K} ,

which proves the result.

Example 4.3.4. Consider the set on the left in Figure 1.1 on page 17 in

Section 1.3; it is the union of a disk and a square. We saw that is is not a

spectrahedron, since failing to be basic closed semi-algebraic. However, since

the disk and the square are spectrahedra, the set is a spectrahedral shadow.

Example 4.3.5. Let S1 := {(a1, a2) ∈ R2 | a1 ≥ 0, a2 ≥ 0, a1a2 ≥ 1} and

S2 = {(0, 0)}. Both subsets of R2 are spectrahedra, so the convex hull of

their union,

conv(S1 ∪ S2) = {(a1, a2) ∈ R2 | a1 > 0, a2 > 0} ∪ {(0, 0)},

is a spectrahedral shadow.

In the second part of this section we want to give a unified account of

several results on convex hulls of images under polynomial maps, including

results by Lasserre, Parrilo, Ramana and Goldman, Henrion and Scheiderer.

The results can all be deduced from the following principle:

Proposition 4.3.6. Let T ⊆ Rs be a set and V ⊆ R[y1, . . . , ys] a finite

dimensional linear subspace containing 1. Assume the subset P ⊆ V of all

elements of V that are nonnegative on T is a spectrahedral shadow. Then for

any map f = (f1, . . . , fn) : Rs → Rn with fi ∈ V for all i,

conv(f(T )) ⊆ Rn

is a spectrahedral shadow.
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Proof. For any affine linear polynomial ` ∈ R[x1, . . . , xn]1 the polynomial

`(f1, . . . , fn) belongs to V . Define

M := {` ∈ R[x1, . . . , xn]1 | `(f1, . . . , fm) ∈ P}.

M , as the inverse image of P under a linear map, is a spectrahedral shadow.

It also contains only polynomials that are nonnegative on f(T ). Conversely,

if ` is affine linear and nonnegative on f(T ), then `(f1, . . . , fn) is in P . Thus

M is precisely the cone of affine linear polynomials nonnegative on f(T ). By

the argument from the proof of Theorem 4.2.5 (1) (using Lemma 4.1.8) we

find that

conv(f(T )) = {a ∈ Rn | `(a) ≥ 0 for all ` ∈M}

is a spectrahedral shadow.

Example 4.3.7. Not very surprisingly, Lasserre’s result (Theorem 4.2.5 (4))

can be recovered from Proposition 4.3.6. Indeed if there is some d such

that QM(p)d contains all affine linear polynomials that are nonnegative on

T , then apply Proposition 4.3.6 with s = n, V = R[x]1 and f = id. Then

P = V ∩QM(p)d is a spectrahedral shadow, by Lemma 4.2.2.

Example 4.3.8. We also get that the closure of conv(f(Rs)) is a spectra-

hedral shadow, for any quadratic map f : Rs → Rn (which is of course also

not a new result, in view of Lemma 4.1.6 and Proposition 6.1.1 below). Use

the well-known fact that every globally nonnegative quadratic polynomial is

a sum of squares of affine linear polynomials, and apply Proposition 4.3.6

with T = Rs and V = R[y1, . . . , ys]2. Again recall that P =
∑

R[y]21 ⊆ V is

a spectrahedral shadow.

In the following result, case (1) for a full rational curve is proven in

Henrion [23], Theorem 1. In the version it is stated here it has also been the

topic of a talk of Parrilo at a workshop in Banff in 2006, but there seems

to be no suitable reference. Case (2) relies on results of Scheiderer, as also

explained in [53].
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Proposition 4.3.9. Let T ⊆ Rs be either

(1) a semi-algebraic subset of a rational curve, or

(2) a smooth curve of genus 1 with at least one non-real point at infinity.

Then for any rational map

f =

(
f1

g
, . . . ,

fn
g

)
: Rs → Rn

such that g does not vanish anywhere on T, we find that

conv(f(T ))

is a spectrahedral shadow.

Proof. First check that we can reduce to the case where the denominator is

1, i.e. where f is a polynomial map. Indeed for a general rational map f

we can take without loss of generality a denominator g that is positive on T ,

and we can also prove the claim for the following map instead:

F : T → Rn+1; x 7→
(
f1(x)

g(x)
, . . . ,

fn(x)

g(x)
, 1

)
.

Then define

G : T → Rn+1; x 7→ g(x) · F (x).

This map is polynomial and thus assume we already know that conv(G(T ))

is a spectrahedral shadow. By Proposition 4.3.1, the conic hull of a spectra-

hedral shadow is again a spectrahedral shadow. So together with Proposition

6.1.1 that we will prove in Section 6 we get that

cone(G(T )),

the closed conic hull of of G(T ), is a spectrahedral shadow. But now one can

check, by a simple argument of converging sequences, that

cone(G(T )) ∩ (Rn × {1}) = conv(F (T )),

which finishes the reduction step.

We now just have to show that in both cases the set of polynomials

nonnegative on T of degree less or equal d is a spectrahedral shadow, for all

d. We can then apply Proposition 4.3.6.
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For (1) it is clearly enough to consider the case of T being a semi-

algebraic subset of a straight line, which is covered by Kuhlmann, Marshall

and Schwartz [25], Theorem 4.1. They prove that for any such set T and

degree d, there is a d′ and a suitable truncated quadratic module QM(p)d′

that contains all polynomials of degree at most d that are nonnegative on T .

For (2), the results on the existence of sums of squares representations

of nonnegative polynomials is Scheiderer [54], Theorem 4.10 (a). The degree

bounds for these representations, as explained in Scheiderer [53], imply the

intended result. So there is again a quadratic module containing all nonneg-

ative polynomials of bounded degree in some truncated part.

Example 4.3.10. The basic closed semi-algebraic set

S = {(a1, a2) ∈ R2 | 0 ≤ a2 ≤ 1,−1 ≤ a1, a
2
2 − a3

1 ≥ 0}

in Figure 4.3 is bounded by segments of rational curves. The convex hull

of each such segment is a spectrahedral shadow, by Proposition 4.3.9. The

set S is the convex hull of all of these convex hulls combined, and thus also

a spectrahedral shadow, by Corollary 4.3.3. The standard Lasserre method

does not apply to S directly, since S has a non-exposed face (see Theorem

5.2.1 in Chapter 5).

Figure 4.3:

Example 4.3.11. Let S ⊆ R2 be defined by the inequality a2
2 ≤ 1 − a4

1, as

shown on the left in Figure 4.4. The boundary of S is a smooth genus one

curve with a non-real point at infinity. Thus S is a spectrahedral shadow.

Applying the polynomial map (a1, a2) 7→ (a1, a1a2) sends this curve to the

curve shown in the middle of Figure 4.4. This curve is clearly not smooth

anymore. Still Proposition 4.3.9 guarantees that its convex hull is a spectra-

hedral shadow (shown on the right in Figure 4.4).
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Figure 4.4:

We state some more corollaries of Proposition 4.3.6. The following result

is Henrion [23], Theorem 1:

Corollary 4.3.12. Let either f : R3 → Rn be homogeneous of degree 4 or

f : R2 → Rn of degree 4, but not necessarily homogeneous. Then the closure

of the convex hull of the image of f is a spectrahedral shadow.

Proof. We can apply Proposition 4.3.6 together with Lemma 4.2.2, using

Hilbert’s result that every globally nonnegative homogeneous degree 4 poly-

nomial in three variables, and every globally nonnegative degree 4 polynomial

in two variables is a sum of squares.

We get another result that has not been observed before:

Corollary 4.3.13. Let f : R4 → Rn be homogeneous quadratic. Let T ⊆ R4

be any polyhedral cone. Then conv(f(T )) is a spectrahedral shadow.

Proof. Every polyhedral cone in R4 is a finite union of cones that can be

transformed by a linear automorphism to the first orthant in some Rk, with

k ≤ 4. This follows from Caratheodory’s Theorem for cones. If

T = T1 ∪ · · · ∪ Tt

then

conv(f(T )) = conv
(
f(T1) ∪ · · · ∪ f(Tt)

)
.

So by Corollary 4.3.3 and Proposition 6.1.1 below it is enough to prove the

Corollary for the first orthant T in R4.

Every quadratic form in the 4 variables y1, . . . , y4 that is nonnegative on

the first orthant belongs to the quadratic module QM(p) generated by the
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pairwise products of the variables yiyj. This is just a slight reformulation of

the main result from Diananda [11]. But then a degree bound condition on

the sums of squares is fulfilled for any such representation, since no degree

cancellation can occur when adding polynomials that are nonnegative on the

first orthant. So in fact each such nonnegative quadratic form is a positive

combination of the yiyj, plus a sums of squares of linear forms. Now apply

Proposition 4.3.6 with V the space spanned by the quadratic forms and 1.

Use that P = QM(p)2 ∩ V is a spectrahedral shadow.

4.4 The Results of Helton and Nie

Helton and Nie have proven several results on spectrahedral shadows in [19,

20]. Roughly, they apply the Lasserre relaxation method locally, and use

the result on convex hulls (Lemma 4.3.3 in our work) to obtain a global

result. Their papers contain several different results, some of them involving

quite technical assumptions. We want to mention the result that seems most

important and least technical to us. It is Theorem 2 in [20]. We need the

following definitions:

Definition 4.4.1. (1) Let p ∈ R[x]. Then p is called sos-concave, if its

negative Hessian matrix −O2(p) is a sum of squares, i.e. if there is a

matrix W ∈ Ml×n (R[x]) with

−O2(p) = W tW.

(2) Let S ⊆ Rn be a set. Then p ∈ R[x] is called strictly quasi concave on

S, if the Hessian of p is negative definite on the orthogonal complement

of the gradient of p, at each point of S, i.e. if

vtO2(p)(a)v < 0 for all 0 6= v ∈ O(p)(a)⊥.

Now the result of Helton and Nie is the following:

Theorem 4.4.2 (Helton & Nie [20]). Let p = (p1, . . . , pm) be such that S(p)

is compact and convex with nonempty interior. Assume that each pi is either

sos-concave, or strictly quasi concave on S(p). Then S(p) is a spectrahedral

shadow.
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Example 4.4.3. We can apply the result to the set

S = {(a1, a2) ∈ R2 | a4
1 + a4

2 ≤ 1}.

The defining polynomial p = 1−x4
1−x4

2 turns out to be sos-concave. Indeed

we have

−O2(p) =

(
12x2

1 0

0 12x2
2

)
=

( √
12x1 0

0
√

12x2

)t( √
12x1 0

0
√

12x2

)
.

Example 4.4.4. Let p1 = 2 − x1, p2 = x1 − 1, p3 = 1 − x2, p4 = x2
1x2 − 1.

The set S(p) is shown in Figure 4.5. The polynomials p1, p2, p3 have a trivial

Hessian matrix, and are thus sos-concave. The Hessian of p4 at some point

a = (a1, a2) ∈ S(p) is

O2(p4)(a) =

(
2a2 2a1

2a1 0

)
.

The orthogonal complement of O(p4)(a) is spanned by

(
a1

−2a2

)
. We thus

compute

−(a1,−2a2)O
2(p4)(a)

(
a1

−2a2

)
= 6a2

1a2.

This expression is clearly positive on S(p). So p4 is strictly quasi concave on

S(p), and S(p) is a spectrahedral shadow.

Figure 4.5:





Chapter 5

Limitations of the Relaxation

Methods

5.1 Preliminaries

In this chapter we examine the Lasserre relaxation method in more detail.

We derive necessary conditions for it to work. Our main result will show that

whenever a convex set S(p) with nonempty interior has a non-exposed face,

no Lasserre relaxation can be exact, i.e.

S(p) ( L(p)d

holds for all d ∈ N. This resembles a property of spectrahedra: they have only

exposed faces. Note however that a convex set with a non-exposed face can

of course be a spectrahedral shadow. We have already seen examples, e.g.

Example 4.3.4 and Example 4.3.10. Only the global Lasserre method cannot

work in these cases. Note also that Theorem 4.2.5 provides an alternative

formulation for our main result: if S(p) has a non-exposed face, then not all

nonnegative linear polynomials can have a bounded degree sums of squares

representation in QM(p)d. This formulation is purely real-algebraic, and does

not involve the theory of spectrahedral shadows. The result is published in

Netzer, Plaumann and Schweighofer [38].

Before we start, we repeat some important notions. A face of a convex

set S ⊆ Rn is a nonempty convex subset F ⊆ S, such that for x, y ∈ S and

λ ∈ [0, 1], λx + (1 − λ)y ∈ F implies x, y ∈ F . A special case is that of an

extreme point (i.e. if F = {a} is a singleton). Note that there can only be

101
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finite increasing chains of faces

· · · ( F ′ ( F ′′ ( · · ·

of S. Indeed, the dimension of the affine hull of a face strictly grows if the

face becomes larger. We will in the following denote by dim(S) the dimension

of the affine hull of a convex set S.

A face F of S is exposed, if there is an affine linear function ` on Rn, with

` ≥ 0 on S and

F = {a ∈ S | `(a) = 0}.

In case that F 6= S this is the same as saying that there is a supporting

hyperplane of S that touches S precisely in F .

We need some technical lemmas first. The following is a special case of

Proposition II.5.16 in Alfsen [3], equipped with an alternative proof.

Lemma 5.1.1. Let S be a closed convex subset of Rn. A face F of S is

exposed if and only if for every a ∈ S \F there exists a supporting hyperplane

Ha of S with F ⊆ Ha and a /∈ Ha.

Proof. Necessity is obvious. For sufficiency, write Fa = S ∩ Ha. Each Fa is

an exposed face, containing F . By assumption we find

F =
⋂

a∈S\F

Fa.

Since an arbitrary nonempty intersection of faces is again a face, and there

can be no infinite chains of faces, this intersection is in fact finite:

F =
t⋂
i=1

Fai
.

So if `i is an affine linear polynomial nonnegative on S with

Fai
= {a ∈ S | `i(a) = 0} ,

then the sum ` =
∑t

i=1 `i exposes F as a face of S.

Lemma 5.1.2. Let S be a closed convex subset of Rn with non-empty in-

terior. A face F of S is exposed if and only if F ∩ U is an exposed face of

S ∩ U, for every affine linear subspace U of Rn containing F with

dim(U) = dim(F ) + 2

and U ∩ int(S) 6= ∅.
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Proof. Note first that the condition is empty if F is of dimension > n − 1.

Indeed, F is always exposed in that case, as is easily checked. Thus we may

assume that n > 2 and dim(F ) 6 n− 2.

If H exposes F and U ∩ int(S) is non-empty, then H ∩ U exposes F in

S ∩ U . Conversely, assume that F ∩ U is an exposed face of S ∩ U for every

U satisfying the hypothesis. We want to apply the preceding lemma. For

a ∈ S \ F we must produce a supporting hyperplane H of S containing F,

with a /∈ H. Choose U to be an affine linear subspace of Rn of dimension

dim(F )+2 containing F, such that a ∈ U and U∩ int(S) 6= ∅. By hypothesis,

there exists a supporting hyperplane G of S ∩ U in U that exposes F as a

face of S ∩ U . In particular, a /∈ G. Since G ∩ S = F , it follows that

G∩ int(S) = ∅, hence by separation of disjoint convex sets (see e.g. Barvinok

[4], Thm. III.1.2), there exists a hyperplane H that satisfies G ⊆ H and

H ∩ int(S) = ∅. Since U ∩ int(S) 6= ∅, it follows that G ⊆ H ∩U ( U , hence

G = H ∩ U . Thus H is a supporting hyperplane of S containing F with

a /∈ H.

We finally need the following technical lemma.

Lemma 5.1.3. Let S be a convex subset and U an affine linear subspace of

Rn intersecting the interior of S. Suppose that ` : Rn → R is an affine linear

function such that ` > 0 on S∩U . Then there exists an affine linear function

`′ : Rn → R such that `′ > 0 on S and `′|U = `|U .

Proof. Let N := {x ∈ U | `(x) < 0} and let S ′ be the convex hull of

{x ∈ U | `(x) > 0} ∪ S.

Then N and S ′ are convex sets that we now prove to be disjoint. Assume for

a contradiction that there are λ ∈ [0, 1], x ∈ U and y ∈ S such that `(x) > 0

and λx+ (1− λ)y ∈ N . Since neither x nor y lies in N , we have λ 6∈ {0, 1}.
Since U is an affine linear subspace, λx + (1 − λ)y ∈ U now implies y ∈ U
and therefore `(y) > 0, leading to the contradiction

0 > `(λx+ (1− λ)y) = λ`(x) + (1− λ)`(y) > 0.

Without loss of generality we can assume N 6= ∅ (otherwise `|U = 0

and we can take `′ = 0). Then by separation of non-empty disjoint convex

sets (e.g. Thm. III.1.2 in Barvinok [4]), we get an affine linear function
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`′ : Rn → R, not identically zero, such that `′ > 0 on S ′ and `′ 6 0 on N . In

particular, `′ > 0 on S and `′ cannot vanish at an interior point of S. Since

U intersects by hypothesis the interior of S, it is not possible that `′ vanishes

identically on U . Moreover, all x ∈ U with `(x) = 0 lie at the same time

in S ′ and in the closure of N , implying that `′(x) = 0. This shows that the

restrictions of ` and `′ on U are the same up to a positive factor, which we

may assume to be 1 after rescaling.

5.2 Main Result

We are now ready for the main result from Netzer, Plaumann and Schweig-

hofer [38]. It gives a necessary condition for the bounded degree representa-

tion property to hold.

Theorem 5.2.1. Let S = S(p) ⊆ Rn be convex with non-empty interior.

Suppose that there exists d > 1 such that the d-th Lasserre relaxation is

exact, i.e.

L(p)d = S

holds. Then all faces of S are exposed.

In view of Theorem 4.2.5 (iv) and (v), we have the following equivalent

formulation of the same theorem:

Theorem (Alternative formulation). Let S = S(p) ⊆ Rn be convex with

non-empty interior. Suppose that there exists d > 1 such that every linear

polynomial ` with ` > 0 on S is contained in QM(p)d. Then all faces of S

are exposed.

Proof. We begin by showing that it is sufficient to prove that all faces of

dimension n − 2 are exposed. Let F be a face of S of dimension e. For

e > n − 1 there is nothing to show, so assume e 6 n − 2. If F is not

exposed, then by Lemma 5.1.2 there exists an affine linear subspace U of Rn

containing F, with dim(U) = e + 2 and U ∩ int(S) 6= ∅, and such that F is

a non-exposed face of S ∩ U . Furthermore, by Lemma 5.1.3, for every linear

polynomial ` that is nonnegative on S ∩U there exists a linear polynomial `′

that is nonnegative on S and agrees with ` on U . Upon replacing Rn by U

and S by S ∩ U , we reduce to the case e = n− 2.
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Now assume for contradiction that d > 1 as in the statement exists and

that F is a face of dimension n− 2 that is not exposed.

Step 1. There is exactly one supporting hyperplane H of S that contains

F . For if `1, `2 are non-zero linear polynomials with `i|F = 0 and `i|S > 0,

put W := {`1 = 0} ∩ {`2 = 0}. Then ` := `1 + `2 defines a supporting

hyperplane {` = 0} of S with {` = 0} ∩ S = W ∩ S. If `1, `2 are linearly

independent, then dim(W ) = n − 2 = dim(F ), hence F = {` = 0} ∩ S,

contradicting the fact that F is not exposed.

We may assume after an affine change of coordinates that

H = {x1 = 0}, x1 > 0 on S,

and that 0 lies in the relative interior of F . Note that any supporting hyper-

plane of S containing 0 must contain F and therefore coincide with H.

Since F is not exposed, F0 = H ∩ S is a face of dimension n − 1 with

F contained in its relative boundary. In particular, it follows that F is also

contained in the closure of ∂S \H.

Step 2. By the curve selection lemma (see e.g. Thm. 2.5.5. in Bochnak,

Coste, and Roy [7]), we may choose a continuous semi-algebraic path

γ : [0, 1]→ ∂S

such that γ(0) = 0 ∈ F , γ
(
(0, 1]

)
∩H = ∅. We relabel 1 = p0, p1, . . . , pm into

two groups f1, . . . , fr, g1, . . . , gs as follows:

fi|γ([0,1]) = 0 (i = 1, . . . , r)

gj|γ((0,1]) > 0 (j = 1, . . . , s)

Indeed, after restricting γ to [0, α] for suitable α ∈ (0, 1] and re-parametrizing,

we can assume that each pi falls into one of the above categories.

We claim that there exists an expression

(∗) x1 =
r∑
i=1

ρifi +
s∑
j=1

σjgj

with ρi, σj ∈
∑

R[x]2 and such that σj(0) = 0 for all j = 1, . . . , s.

To prove the existence of the expression (∗), consider the following state-

ment:
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(†) For each λ ∈ (0, 1] there exists a linear polynomial `λ ∈ R[x]1 such

that `λ(γ(λ)) = 0, `λ > 0 on S, and ||`λ|| = 1. For this `λ, there exist

ρ
(λ)
i , σ

(λ)
j ∈

∑
R[x]2d such that

`λ =
r∑
i=1

ρ
(λ)
i fi +

s∑
j=1

σ
(λ)
j gj

and such that

σ
(λ)
j (γ(λ)) = 0

for all j = 1, . . . , s.

The statement (†) is true, with d > 1 not depending on λ: For λ ∈ (0, 1],

let `λ ∈ R[x]1 be such that {`λ = 0} is a supporting hyperplane of S passing

through γ(λ), and such that ||`λ|| = 1 and `λ|S > 0. By hypothesis,

`λ ∈ QM(f1, . . . , fr, g1, . . . , gs)d,

with d not depending on λ, which yields the desired representation. Note

that σ
(λ)
j (γ(λ)) = 0 is automatic, since gj(γ(λ)) 6= 0, but `λ(γ(λ)) = 0.

The crucial point is now that (†) can be expressed as a first-order for-

mula in the language of ordered rings. The bound d on the degree of the

sums of squares automatically also bounds their lengths, by Carathéordory’s

Theorem. So the existence of the representation (†) is in fact the existence

of finitely many coefficients of polynomials.

Thus (†) holds over any real closed extension field R of R, by the model-

completeness of the theory of real closed fields. Now let R be any proper

(hence non-archimedean) extension field and let ε ∈ R, ε > 0, be an in-

finitesimal element with respect to R. We apply (†) with λ = ε and get

(‡) `ε =
r∑
i=1

ρ
(ε)
i fi +

s∑
j=1

σ
(ε)
j gj

with

σ
(ε)
j (γ(ε)) = 0

for all j = 1, . . . , s. Let O be the convex hull of R in R, a valuation ring with

maximal ideal m. Since int(S) 6= ∅, the quadratic module

M = QM(f1, . . . , fr, g1, . . . , gr) ⊆ R[x]
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has trivial support (which means M ∩−M = {0}, i.e. M is a pointed cone).

As ||`ε|| = 1, it follows that all coefficients of the polynomials in (‡) must lie

in O (see e.g. the proof of Lemma 8.2.3 in Prestel and Delzell [46]). We can

therefore apply the residue map

O → O/m ∼= R, a 7→ a

to the coefficients of (‡). From the uniqueness of the supporting hyperplane

H = {x1 = 0} in 0 (Step 1), it follows that `ε = c ·x1 for some c ∈ R>0. This

yields the desired expression (∗).

Step 3. The existence of (∗) leads to a contradiction: Substituting x1 = 0

in (∗) gives

0 =
r∑
i=1

ρi(0, x
′)fi(0, x

′) +
s∑
j=1

σj(0, x
′)gj(0, x

′)

in R[x′], with x′ = (x2, . . . , xn). Since all fi(0, x
′), gj(0, x

′) are non-negative

on F0, which has non-empty interior in H, it follows that ρi(0, x
′) = 0 when-

ever fi(0, x
′) 6= 0. In other words, if x1 does not divide fi, then x2

1 divides ρi
in R[x].

Going back to (∗) and substituting x2 = · · · = xn = 0 now gives

x1 =
r∑
i=1

ρi(x1, 0)fi(x1, 0) +
s∑
j=1

σj(x1, 0)gj(x1, 0)

Since σj(0) = 0 for all j = 1, . . . , s, we now know that x2
1 divides all terms

on the right-hand side, except possibly ρi(x1, 0)fi(x1, 0) for such i where x1

divides fi. In the latter case, write fi = x1f̃i and note that f̃i vanishes on

γ((0, 1]) since fi does and x1 does not. Thus f̃i(0) = 0 by continuity, which

implies x1|f̃i(x1, 0), so x2
1|fi(x1, 0) after all. It follows that x2

1 divides x1, a

contradiction.

Remark 5.2.2. (1) Whether the faces of S = S(p) are exposed is a purely

geometric condition, independent of the choice of the polynomials p.

Thus if S has a non-exposed face, there do not exist polynomials p

defining S that yield an exact Lasserre relaxation for S.

(2) The theorem does not imply that a basic closed semi-algebraic convex

set with a non-exposed face cannot be a spectrahedral shadow, as we

have already mentioned. We only shown that Lasserre’s global relax-

ation approach can not work in that case.
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5.3 Examples

We conclude the chapter with some examples.

Example 5.3.1. Consider again the set S(p) ⊆ R2 from Example 4.2.8,

defined by

p1 = x2, p2 = 1− x2, p3 = x2 − x3
1, p4 = 1 + x1,

as shown in Figure 4.2 on page 91. We saw that the third Lasserre relaxation

does approximate S(p), but is not exact. Since the origin is a non-exposed

face of S(p), no Lasserre relaxation is exact. Another way to state this is

that there do not exist polynomials q with S(p) = S(q), such that all linear

polynomials that are nonnegative on S(q) belong to QM(q)d for some fixed

value of d.

On the other hand, the preordering generated by p1, p2, p3, p4 as above

(i.e. the quadratic module generated by all products of the pi) contains all

polynomials that are nonnegative on S(p). This follows from results of Schei-

derer. Indeed, by the local-global principle Corollary 2.10 from Scheiderer

[55] it suffices to show that the preordering generated by the pi is locally

saturated. At the origin this follows from the results in Scheiderer [56] (in

particular, Theorem 6.3 and Corollary 6.7). At all other points it follows

already from [55], Lemma 3.1.

However, from the Lemma 4.3.3, we can deduce that S(p) is in fact a

spectrahedral shadow: For S(p) is the (convex hull of the) union of the sets

S1 = [−1, 0]× [0, 1] and S2 = S(x2 − x3
1, x1, 1− x2). The set S1 is obviously

a spectrahedral shadow (even a spectrahedron), while S2 possesses an exact

Lasserre relaxation: More precisely, we claim that

QM(x2 − x3
1, x1, 1− x2)3

contains all linear polynomials ` ∈ R[x1, x2]1 such that `|S2 > 0. It suffices

to show this for the tangents `a = x2−3a2x1 + 2a3 to S2 passing through the

points (a, a3), a ∈ [0, 1] (the claim then follows from Farkas’s lemma). Write

`a = x3
1 − 3a2x1 + 2a3 + (x2 − x3

1). The polynomial x3
1 − 3a2x1 + 2a3 ∈ R[x1]

is non-negative on [0,∞) and therefore contained in QM(x1)3 ⊆ R[x1] (see

Kuhlmann, Marshall, and Schwartz [25], Theorem. 4.1). This implies the

claim.
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In Netzer, Plaumann and Schweighofer [38] it was asked whether any

Lasserre relaxation L(p)d has only exposed faces. This is false, as shows for

instance Example 4.2.8, due to João Gouveia. The relaxation L(p)3 has a

non-exposed extreme point. It was also asked whether Theorem 5.2.1 remains

true for non-convex sets S(p), i.e. is

L(p)d = conv
(
S(p)

)
only possible if conv

(
S(p)

)
has all exposed faces? João Gouveia showed that

also this is false, by giving the following example (published in Gouveia and

Netzer [14]).

Example 5.3.2. For p := −x4
1 − x4

2 − 2x2
1x

2
2 + 4x2

1 ∈ R[x1, x2] we find

L(p)4 = conv (S(p)) .

Indeed the set S = S(p) is the union of two disks of radius 1 with centers

(−1, 0) and (1, 0), as shown in Figure 5.1 on the left.

Figure 5.1:

By symmetry, it is enough to show that any linear polynomial tangent

to the left circle and non-negative on both disks belongs to QM(p)4. The

points on the left circle that are on the boundary of conv(S) are of the

form aϑ := (cos(ϑ) − 1, sin(ϑ)), for some ϑ ∈ [π/2, 3π/2]. An affine linear

polynomial `ϑ defining the tangent to aϑ such that `ϑ ≥ 0 on S is given by

`ϑ = 1− cos(ϑ)− cos(ϑ)x1 − sin(ϑ)x2.

Since cos(ϑ) ≤ 0 it is enough to check the equality

(8− 8 cos(ϑ)) · `ϑ = p+ (x2
1 + x2

2 − 2 + 2 cos(ϑ))2+

+
(

2
√

1− cos(ϑ)(x2 − sin(ϑ))
)2

+
(

2
√
− cos(ϑ)(x1 − cos(ϑ) + 1)

)2

.
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So although the fourth Lasserre relaxation equals conv
(
S(p)

)
in this exam-

ple, it still has a non-exposed face, as seen on the right in Figure 5.1.



Chapter 6

Closures and Interiors

6.1 The Closure

So far we were mostly concerned with closed semi-algebraic sets. It is how-

ever also interesting to consider non-closed sets. In view of the conjecture

of Helton and Nie, that every convex semi-algebraic set is a spectrahedral

shadow, this case should be considered as well. We will do this in the present

chapter. The results are mostly published in Netzer [37]. We will however

start with a converse result: the closure of a spectrahedral shadow is again a

spectrahedral shadow. The result is from Gouveia and Netzer [14]. We have

already used it earlier.

Proposition 6.1.1. If S ⊆ Rn is a spectrahedral shadow, then so is its

closure S.

Proof. By Proposition 4.1.8 we know that (S◦)◦ is a spectrahedral shadow.

Note that this double polar lives by definition in the space of all linear poly-

nomials defined on R[x]1, which equals Rn+2. If we again understand points

a ∈ Rn as linear polynomials on R[x]1, by the rule

` 7→ `(a),

we find

(S◦)◦ ∩ Rn = S,

which proves the claim.

It is more interesting to pass from closed to non-closed sets. This is what

we want to do in the following sections.
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6.2 Some Helpful Results

In this section we collect some results that will be used for the main theorems

in the next section. We first repeat some important notions. Let S ⊆ Rn be

convex. The relative interior

relint(S)

of S is the subset of S that forms the interior of S in the affine hull of S. So

a point a ∈ S belongs to relint(S) if and only if for all points b ∈ S there is

some ε > 0 such that

a+ ε(a− b) ∈ S.

If a ∈ relint(S), then another point b ∈ S belongs to relint(S) if and only if

there is some ε > 0 such that b+ ε(b− a) ∈ S. One has S ⊆ relint(S).

Lemma 6.2.1. Let S ⊆ Rn be a convex set and let S ′ be a convex subset of

S which is dense in S. Then S ′ contains the relative interior relint(S) of S.

Proof. Without loss of generality assume that S and therefore also S ′ has

nonempty interior in Rn. Now assume for contradiction that there is some

a ∈ int(S) that does not belong to S ′. Then by separation of disjoint convex

sets, we find an affine linear polynomial 0 6= ` ∈ R[x]1 with `(a) ≤ 0 and

` ≥ 0 on S ′. Since S ′ has nonempty interior there is some b ∈ S ′ with

`(b) > 0. Since S ′ ⊆ S and a ∈ int(S) we find some ε > 0 such that

b′ := a + ε(a − b) ∈ S. Since `(b′) < 0 and ` ≥ 0 on S ′, this contradicts

S ⊆ S ′.

Corollary 6.2.2. Let T ⊆ RN be convex and let L : RN → Rn be a linear

map. Then

L(relint(T )) = relint(L(T )).

Proof. The inclusion ”⊆”is clear. For ”⊇”notice that since relint(T ) is convex

and dense in T , L(relint(T )) is a convex and dense subset of L(T ). So the

claim follows from Lemma 6.2.1.

We now turn to matrices. The next proposition will be crucial for the

results in Section 6.3.
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Proposition 6.2.3. Let M ∈ Symk(R) and N ∈ Rl×k. Let Il denote the

identity matrix of size l. Then the following are equivalent:

(1) there is some λ ∈ R such that

(
M N t

N λ · Il

)
� 0.

(2) M � 0 and kerM ⊆ kerN.

Proof. By Theorem 1 in Albert [2], (1) is equivalent to the existence of some

λ such that

M � 0, N = NM †M, λ · Il −NM †N t � 0,

where M † denotes the Penrose-Moore pseudoinverse of M . By Theorem

9.17 in Ahlbrandt and Peterson [1], condition N = NM †M is equivalent to

kerM ⊆ kerN . Finally, one can always choose some big enough λ to insure

λ · Il −NM †N t � 0, which proves the Proposition.

6.3 Interiors

Most of the existing results on spectrahedral shadows concern closed sets.

Our goal in this section is to examine non-closed sets. The following easy

result states that we can always remove faces of spectrahedral shadows, and

still obtain spectrahedral shadows. It does not use the results from Section

6.2 yet.

Proposition 6.3.1. If S is a spectrahedral shadow and F is a face of S, then

F and S \ F are spectrahedral shadows.

Proof. First assume that S ⊆ Rn is a spectrahedron, defined by the linear

matrix polynomial M. Then F is an exposed face of S, which means that

there is an affine linear polynomial ` ∈ R[x]1 such that ` ≥ 0 on S and

{` = 0} ∩ S = F. So we have

F = {a ∈ Rn | M(a) � 0 ∧ `(a) = 0}

and

S \ F =

{
a ∈ Rn | M(a) � 0 ∧ ∃λ

(
λ 1

1 `(a)

)
� 0

}
.
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This shows that F is even a spectrahedron and S \ F is a spectrahedral

shadow.

Now let S be a spectrahedral shadow and let T ⊆ RN be a spectrahedron

such that S = L(T ) for some linear map L : RN → Rn. Then

F̃ := L−1(F ) ∩ T

is a face of T . We thus already know that F̃ and T \ F̃ are spectrahedral

shadows. Since F̃ is mapped onto F and T \ F̃ is mapped onto S \ F under

L, both sets are also spectrahedral shadows.

For spectrahedral shadows with only finitely many faces, i.e. for polyhe-

dra, we thus know that the interior is again a spectrahedral shadow. But

this result is true in general:

Proposition 6.3.2. If S is a spectrahedral shadow, then relint(S) is also a

spectrahedral shadow.

Proof. First assume that S ⊆ Rn is a spectrahedron, defined by the matrix

polynomial

M = M0 + x1M1 + . . .+ xnMn.

Fix a point b ∈ relint(S). We know that relint(S) has the following descrip-

tion:

relint(S) = {a ∈ S | ∃ε > 0 a+ ε(a− b) ∈ S} .

For ε > 0 we haveM(a+ε(a−b)) � 0 if and only if 1
1+ε
·M(a+ε(a−b)) � 0,

and

1

1 + ε
· M(a+ ε(a− b)) =

(
1

1 + ε

)
·M0 + a1M1 + · · ·+ anMn

−
(

ε

1 + ε

)
· (b1M1 + · · ·+ bnMn) .

Making the transformation δ := 1
1+ε

and writing N := −(b1M1 + · · ·+ bnMn)

we find relint(S) to equal the following set:

{a ∈ Rn | ∃δ ∈ (0, 1) : δM0 + a1M1 + · · ·+ anMn + (1− δ)N � 0} .

Since the condition δ ∈ (0, 1) can be translated into

∃λ

(
λ 1

1 δ

)
� 0 ∧

(
λ 1

1 1− δ

)
� 0,
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this is clearly a realization of relint(S) as a spectrahedral shadow.

Now let S be an arbitrary spectrahedral shadow. Suppose T ⊆ RN is a

spectrahedron that maps onto S under a linear map. Then relint(T ) maps

onto relint(S), by Corollary 6.2.2. Since we already know that relint(T ) is a

spectrahedral shadow, this proves the claim.

Remark 6.3.3. We could also try to quantify the element b in the proof

of Proposition 6.3.2, instead of only using one fixed b from relint(S). This

would allow to be more sophisticated in removing faces of S. However, the

approach from the proof doesn’t seem to work then. It relies on the fact that

we consider b as a fixed parameter. However, we can still prove something

better, using a different method. This is our main result, Theorem 6.3.5

below.

By now we have shown that we can remove finitely many faces or all faces

of codimension ≥ 1 from a spectrahedral shadow, and obtain a spectrahedral

shadow. But we would also like to do something in between, for example

remove a semi-arc from the boundary of the disk. With the results from the

previous section we can indeed prove more.

For sets S ′ ⊆ S we denote by (S ′ " S) the set that one obtains from S

by removing all faces that do not touch S ′:

(S ′ " S) := S \
⋃

F∩S′=∅

F,

where F runs through all faces of S. One easily checks that this is the same

as taking the union of the relative interiors of all faces of S that are touched

by S ′, i.e.

(S ′ " S) =
⋃

F∩S′ 6=∅

relint(F ).

Example 6.3.4. On the left in Figure 6.1 you see the set

S = [−1, 0]× [−1, 1] ∪
{

(a1, a2) ∈ R2 | a2
1 + a2

2 ≤ 1
}
.

It was already examined in Example 4.3.4 and in Section 1.3. We know that

it is a spectrahedral shadow. In the center of Figure 6.1 we included the

subset

S ′ = {(a1, a2) | |a1|+ |a2| ≤ 1} .

Finally, on the right, you see the set (S ′ " S). All faces of S that do not

intersect S ′ have been removed.
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Figure 6.1:

Before we state our main result, recall the following. For every point

a ∈ S there is a unique face Fa of S that contains a in its relative interior.

It is the smallest face containing a. Fa consist precisely of the points b ∈ S
for which there is some ε > 0 such that a+ ε(a− b) ∈ S.

If S ⊆ Rn is a spectrahedron, defined by the size k linear matrix inequality

M� 0, then every face of S is of the form

FU = {a ∈ S | U ⊆ kerM(a)}

for some subspace U of Rk, and one has

Fa = FkerM(a)

for all a ∈ S (see Ramana and Goldmann [48] and Section 1.3 above).

Theorem 6.3.5. Let S ′ ⊆ S ⊆ Rn be spectrahedral shadows. Then

(S ′ " S)

is also a spectrahedral shadow.

Proof. First assume that S is a spectrahedron. LetM be a symmetric linear

matrix polynomial of size k defining S. We write F(b, S) for the set of all

faces of S containing b. For any b ∈ S ′ we have⋃
F∈F(b,S)

relint(F ) = {a ∈ S | b ∈ Fa}

= {a ∈ Rn | M(a) � 0, kerM(a) ⊆ kerM(b)} .
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So by Proposition 6.2.3 we have

(S ′ " S) =

{
a ∈ Rn | ∃b ∈ S ′ ∃λ

(
M(a) M(b)

M(b) λ · Ik

)
� 0

}
,

using the second definition of (S ′ " S). This proves the claim.

Now let S be an arbitrary spectrahedral shadow. So there is a linear map

L : RN → Rn and a spectrahedron T ⊆ RN with L(T ) = S. We set

T ′ := L−1(S ′) ∩ T.

This is clearly a spectrahedral shadow, and so we already know that (T ′ " T )

is a spectrahedral shadow. We thus finish the proof by showing

L ((T ′ " T )) = (S ′ " S).

For ”⊆” let c ∈ (T ′ " T ). If F is any face of S with F ∩ S ′ = ∅, then clearly

F̃ := L−1(F ) ∩ T

is a face of T with F̃ ∩ T ′ = ∅. Since c ∈ (T ′ " T ) we thus know c /∈ F̃ , and

so L(c) /∈ F . This proves L(c) ∈ (S ′ " S).

For ”⊇” we again use the second definition of (S ′ " S). So let F be a face

of S with F ∩ S ′ 6= ∅. Then F̃ = L−1(F ) ∩ T is a face of T with F̃ ∩ T ′ 6= ∅.
So

relint(F̃ ) ⊆ (T ′ " T ),

and by Lemma 6.2.2 we find

relint(F ) = relint
(
L(F̃ )

)
= L

(
relint(F̃ )

)
⊆ L ((T ′ " T )) .

This finishes the proof.

Remark 6.3.6. (0) One has (S " S) = S and (∅ " S) = ∅ for any

convex set S. Clearly S ′′ ⊆ S ′ ⊆ S implies (S ′′ " S) ⊆ (S ′ " S).

(1) For a point a ∈ relint(S) one has ({a} " S) = relint(S). So Theorem

6.3.5 generalizes Proposition 6.3.2 from above.

(2) (S ′ " S) always contains S ′, and also relint(S) as long as S ′ 6= ∅.
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(3) The realization of (S ′ " S) as a spectrahedral shadow is explicitly

given in the proof of Theorem 6.3.5. So one for example checks that it

preserves rational coefficients from a realization of S ′ and S.

Example 6.3.7. The set on the right in Figure 6.1 is a spectrahedral shadow.

Example 6.3.8. Let D2 be the unit disk in R2. We find that we can remove

any arc in the boundary of D2 (and therefore any semi-algebraic subset of the

boundary) and obtain a spectrahedral shadow. See Figure 6.2 for examples.

For any arc in the boundary of D2 one simply has to provide a spectrahedral

shadow in D2 that touches the boundary of D2 precisely in the points that

do not belong to the given arc. This is always possible, as one easily checks.

Figure 6.2:
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Deutsche Zusammenfassung

Die Theorie der Spektraeder und ihrer Schatten ist ein faszinierendes Ge-

biet aktiver mathematischer Forschung. Das Interesse daran entstand aus der

Entwicklung der semidefiniten Optimierung gegen Ende des letzten Jahrhun-

derts.

Semidefinite Optimierung ist eine Verallgemeinerung der linearen Opti-

mierung. In der linearen Optimierung möchte man eine lineare Funktion unter

linearen Nebenbedingungen optimieren. Optimiert wird also über einen Poly-

eder. Da viele Optimierungsprobleme als lineare Probleme dargestellt werden

können, ist es nicht verwunderlich, dass die lineare Optimierung mindestens

seit dem zweiten Weltkrieg intensiv studiert wurde. Es gibt äußerst effiziente

Algorithmen, um lineare Probleme zu lösen.

In der semidefiniten Optimierung werden nun die linearen Nebenbedin-

gungen dadurch ersetzt, dass eine Linearkombination gewisser symmetrischer

oder hermitescher Matrizen Mi positiv semidefinit sein muss:

M = I + x1M1 + · · ·+ xnMn � 0

M nennt man dabei ein lineares Matrixpolynom. Die Größe der dabei auftre-

tenden Matrizen Mi ist die Größe des Matrixpolynoms. Die Mengen, die so als

zulässige Mengen entstehen, sind immer noch konvex, aber im Allgemeinen

keine Polyeder mehr. Man nennt sie Spektraeder:

S(M) := {a ∈ Rn | M(a) = I + a1M1 + · · ·+ anMn � 0} .

Durch die Abschwächung der Nebenbedingungen lässt sich die semidefinite

Optimierung natürlich breiter anwenden als die lineare Optimierung. Gleich-

zeitig gibt es immer noch sehr effiziente Lösungsalgorithmen. Dadurch wird

die semidefinite Optimierung sehr interessant für Anwendungen.

Durch die Entwicklung der semidefiniten Optimierung stellt sich natür-

lich die Frage nach deren theoretischen Grundlagen. Eine der interessantes-

ten Fragen ist dabei die Klassifizierung von Spektraedern. Natürlich kann es

manchmal schon schwierig zu entscheiden sein, ob eine gegebene Menge ein

Polyeder ist. Bei Spektraedern ist die Frage jedoch grundsätzlich schwierig.

Selbst bei einer explizit in der Ebene oder im Raum gegebenen Menge ist oft

nicht klar, ob es sich um einen Spektraeder handelt.
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Helton und Vinnikov haben zu diesem Problem grundlegende Arbeit ge-

leistet. Sie definieren zuerst sogenannte starr konvexe Mengen. Zunächst

nennt man ein Polynom p ∈ R[x1, . . . , xn] ein RZ-Polynom, falls p(0) = 1

gilt, und p auf allen Ursprungsgeraden nur reelle Nullstellen hat:

∀a ∈ R : p(λ · a) = 0⇒ λ ∈ R.

Das folgende Bild zeigt die Nullstellenmenge des Polynoms

p = x3
1 − x2

1 − x− x2
2 + 1 ∈ R[x1, x2],

und die Schnittpunkte mit einer Ursprungsgeraden.

Da p vom Grad 3 ist sieht man, dass es auf jeder Ursprungsgerade nur reelle

Nullstellen hat. Also ist p ein RZ-Polynom.

Die Punkte innerhalb der innersten Schale von Nullstellen von p bilden

dann eine starr konvexe Menge:

R(p) = {a ∈ Rn | p(λ · a) 6= 0 ∀λ ∈ [0, 1)} .

Im folgenden Bild sieht man die starr konvexe Menge zum Polynom p =

x3
1 − x2

1 − x− x2
2 + 1:

Wenn man nun für ein lineares Matrixpolynom die Determinante

p = detM

berechnet, so stellt man fest, dass p ein RZ-Polynom ist und

S(M) = R(p)
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gilt. Also sind Spektraeder immer starr konvex. Es ist zum Beispiel leicht zu

sehen dass die Menge

S = {(a1, a2) ∈ R2 | a4
1 + a4

2 ≤ 1}

nicht starr konvex ist. Die Randkurve der Menge ist nämlich durch die Be-

dingung a4
1 + a4

2 = 1 definiert, und das Polynom p = 1 − x4
1 + x4

2 ist kein

RZ-Polynom. Damit ist S nun auch kein Spektraeder.

Für die umgekehrte Frage, ob nämlich eine starr konvexe Menge ein Spek-

traeder ist, muss man also versuchen, RZ-Polynome als Determinanten von

linearen Matrixpolynomen zu realisieren. Durch diese Übersetzung des ur-

sprünglich geometrischen Problems in ein algebraisches können Helton und

Vinnikov den zweidimensionalen Fall vollständig lösen:

Theorem (Helton & Vinnikov, 2007). Jedes RZ-Polynom p ∈ R[x1, x2] hat

eine Determinantendarstellung p = detM. Damit ist die starr konvexe Men-

ge R(p) ein Spektraeder:

R(p) = S(M).

In höheren Dimensionen stimmt der erste Teil des Satzes nicht mehr: es gibt

RZ-Polynome ohne Determinantendarstellung. Diese Tatsache wurde zuerst

von Brändén bewiesen. Im ersten Teil dieser Arbeit zeigen wir, dass sogar fast

kein RZ-Polynom eine Determinantendarstellung hat. Wenn man mit Rn,d

die Menge aller RZ-Polynome in n Variablen vom Grad höchstens d, und mit

Dn,d die Menge solcher Polynome mit Determinantendarstellung bezeichnet,

so kann man zeigen:

Theorem. Wenn entweder n ≥ 3 fixiert und d genügend groß, oder d ≥ 4

fixiert und n genügend groß ist, so gilt

dimDn,d < dimRn,d.

Das Ergebnis basiert auf Schranken für die Größe eines linearen Matrix-

polynoms, die wir zuvor beweisen. Dabei wird das Kürzungsverhalten beim

Berechnen der Determinante eines solchen Matrixpolynoms analysiert:

Theorem. Jedes p ∈ Dn,d ist die Determinante eines linearen Matrixpoly-

noms der Größe nd.
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Theorem. Falls für p ∈ Dn,d der Spektraeder R(p) einen volldimensionalen

Kegel enthält, so ist p die Determinante eines linearen Matrixpolynoms der

Größe d.

Damit können wir auch einfache und explizite Gegenbeispiele konstruie-

ren. Das RZ-Polynom

(x0 + 1)2 − x2
1 − x2

2 − x2
3 − x2

4

etwa hat keine Determinantendarstellung. Es gibt auch solche Gegenbeispiele

mit kompakter Menge R(p).

Ob der zweite Teil des Satzes von Helton und Vinnikov, ob nämlich jede

starr konvexe Menge ein Spektraeder ist, auch in höheren Dimensionen immer

stimmt, ist eine noch offene Frage. Man könnte sie etwa beweisen, indem man

für eine genügend hohe Potenz des RZ-Polynoms p eine Determinantendar-

stellung findet. Hierzu gibt es positive und negative Ergebnisse. Brändén hat

beispielsweise gezeigt, dass ein RZ-Polynom existiert, von dem keine Potenz

eine Determinantendarstellung besitzt. Wir geben nun eine neue Methode

an, mit der diese Frage untersucht werden kann. Dazu wird zum Polynom p

eine Hermite-Matrix H(p) konstruiert. Die Einträge von H(p) sind Polynome

in n Variablen. Das Polynom p ist nun genau dann ein RZ-Polynom, wenn

H(p) an jedem Punkt des Rn positiv semidefinit ist. Wir zeigen nun:

Theorem. Falls eine Potenz von p eine Determinantendarstellung besitzt,

so ist

H(p) = QtQ

eine Quadratsumme von polynomiellen Matrizen Q ∈ Mk×d(R[x1, . . . , xn]).

Diese stärkere Bedingung kann numerisch sehr gut untersucht werden,

wiederum durch semidefinite Optimierung. In Brändén’s Beispiel erhält man

beispielsweise numerisch, dass die Hermite-Matrix keine Quadratsumme ist.

Auch weitere solche Beispiele lassen sich produzieren.

Wir geben weiter auch eine positive Methode an, um eine genügend hohe

Potenz eines Polynoms als Determinante zu realisieren. Dazu konstruieren wir

zum Polynom p eine nicht-kommutative Algebra A(p) mit Involution. Falls

nun A(p) eine endlich-dimensionale Darstellung zulässt, also einen Algebra-

Homomorphismus

A(p)→Mk(C),
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so besitzt eine Potenz von p eine Determinantendarstellung. Für den Fall

eines quadratischen Polynoms p finden wir eine explizite solche Darstellung

von A(p), und damit eine explizite Determinantendarstellung einer Potenz

von p :

Theorem 6.3.9. Für p ∈ Rn,2 und r = 2b
n
2
c−1 hat pr eine Determinanten-

darstellung. Die Darstellung kann explizit konstruiert werden.

Man bekommt daraus beispielsweise die folgende Determinantendarstellung:

(
(x0 + 1)2 − x2

1 − x2
2 − x2

3 − x2
4

)2

= det


1 + x0 x1 + ix3 x2 + ix4 0

x1 − ix3 1 + x0 0 −x2 − ix4

x2 − ix4 0 1 + x0 x1 + ix3

0 −x2 + ix4 x1 − ix3 1 + x0

 .

Auch wenn man keine Potenz eines Polynoms p als Determinante rea-

lisieren kann, so wäre ein Darstellung eines Vielfachen pq als Determinan-

te immer noch wünschenswert. Insbesondere wenn q in der starr konvexen

Menge R(p) keine Nullstellen hat, ist R(p) = R(pq) damit immer noch ein

Spektraeder. Hierfür geben wir nun eine mögliche Konstruktionsmethode an,

wiederum basierend auf der Hermite-Matrix H(p). Man beginnt mit einer

Quadratsummenzerlegung von H(p) mit möglichen Nennern:

q2 · H(p) = QtQ, Q ∈ Mk×d(R[x]).

Eine solche Zerlegung existiert für jedes RZ-Polynom p. Dann betrachtet man

das folgende Diagramm von freien R[x]-Moduln:

R[x]d
Q //

L
��

R[x]k

R[x]d
Q // R[x]k

Dabei ist L Multiplikation mit der sogenannten Begleitmatrix von p:

L =


0 0 0 −pd
1 0 0 −pd−1

0
. . . 0

...

0 · · · 1 −p1

 ,
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wobei pi der homogene Summand vom Grad i in p ist. Es ist leicht zu sehen

dass det(I−L) = p gilt. Leider ist L aber nicht symmetrisch, und die Einträge

sind nicht linear. Allerdings ist L symmetrisch bezüglich der Bilinearform die

von q2 · H(p) definiert wird. Gleichzeitig ist L ein graduierter Morphismus

vom Grad 1, wenn man R[x]d mit einer geeigneten Graduierung versieht.

Die Abbildung Q übersetzt die Bilinearform q2 · H(p) nun aber genau in

die übliche Bilinearform auf R[x]k, und die Graduierung auf R[x]d in die

Standardgraduierung auf R[x]k. Man kann also hoffen, ein symmetrisches

lineares Matrixpolynom M = x1M1 + · · · + xnMn zu finden, welches obiges

Diagramm kommutativ fortsetzt. Dann erhält man:

Theorem. Sei M = x1M1 + · · ·+xnMn ein symmetrisches lineares Matrix-

polynom, welches MQ = QL erfüllt. Dann ist p ein Faktor von det(I −M).

Man beachte, dass die BedingungMQ = QL auf ein lineares Gleichungs-

system führt, welches gewöhnlich einfach gelöst werden kann. Die Metho-

de kann also tatsächlich zur Konstruktion von Determinantendarstellungen

verwendet werden. Sie funktioniert beispielsweise immer im Fall von qua-

dratischen Polynomen. Allerdings gibt es auch Fälle, in denen das genannte

Gleichungssystem nicht lösbar ist, die Methode also versagt.

Mit einer ähnlichen Vorgehensweise kann man schließlich beweisen, dass

lineare symmetrische Determinantendarstellungen mit Nennern für jedes RZ-

Polynom existieren:

Theorem. Sei p ∈ R[x] ein RZ-Polynom. Dann gibt es eine symmetrische

Matrix M∈ Mk (R(x)) mit

M(λ · a) = λ · M(a)

für alle λ 6= 0 und a ∈ Rn für welche M(a) definiert ist, so dass

det(I −M) = p.

Man beachte, dass eine solche Determinantendarstellung ein algebraisches

Zertifikat für die geometrische RZ-Eigenschaft von p ist. Ein solches Zertifikat

existiert also für jedes RZ-Polynom.

Im zweiten Teil der Arbeit befassen wir uns mit Projektionen von Spektra-

edern, sogenannten spektraedrischen Schatten. Obwohl ja Projektionen von
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Polyedern wieder Polyeder sind, stimmt das selbe für Spektraeder im Allge-

meinen nicht. Spektraedrische Schatten sind also nochmals wesentlich allge-

meinere Mengen als Spektraeder. Bisher ist nicht klar, ob jede konvexe semi-

algebraische Menge ein solcher Schatten ist. Natürlich sind spektraedrische

Schatten aus Sicht der semidefiniten Optimierung immer noch interessant. Ei-

ne Funktion kann ja einfach über den Urbild-Spektraeder optimiert werden.

Dabei entstehen im Optimierungsproblem allerdings zu-sätzliche Variablen.

Wir beschreiben in der vorliegenden Arbeit zunächst die wichtigsten Er-

gebnisse und Konstruktionsmethoden für spektraedrische Schatten. Beispiels-

weise kann man zeigen, dass die konvexe Hülle zweier spektraedrischer Schat-

ten wieder ein spektraedrischer Schatten ist.

Besonders die sogenannte Lasserre Methode wird genauer untersucht. Da-

bei beginnt man mit einer basisch abgeschlossenen semi-algebraischen Menge

S(p) = {a ∈ Rn | p1(a) ≥ 0, . . . , pm(a) ≥ 0} ,

definiert durch die Polynome p = (p1, . . . , pm). Man möchte nun feststellen,

ob die konvexe Hülle

conv(S(p))

oder deren Abschluss ein spektraedrischer Schatten ist. Lasserre gibt dafür

eine Folge von solchen Schatten an, die conv(S(p)) von außen approximieren.

Dazu betrachtet man einen trunkierten quadratischen Modul

QM(p)d :=
{
σ0 + σ1p1 + · · ·+ σmpm | σi ∈

∑
R[x]2, deg(σ0), deg(σipi) ≤ d

}
.

Die Bezeichnung
∑

R[x]2 steht für die Menge aller Quadratsummen von Po-

lynomen. Die d-te Lasserre Relaxierung von S(p) ist nun

L(p)d =
{
a ∈ Rn | `(a) ≥ 0 für alle linearen Polynome ` ∈ QM(p)d

}
.

Man kann zeigen dass alle L(p)d spektraedrische Schatten sind, und findet

conv(S(p)) ⊆ L(p)d+1 ⊆ L(p)d

für alle d. Besonders interessant ist nun der Fall, dass die approximierende

Folge exakt ist, also ab einem gewissen Index mit conv(S(p)) übereinstimmt.

Wir geben die folgende geometrisch notwendige Bedingung für das Funk-

tionieren der Methode an.
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Theorem. Sei S(p) ⊆ Rn konvex mit nichtleerem Inneren. Falls für ein

d ∈ N
S(p) = L(p)d

gilt, so hat S(p) nur exponierte Seiten.

Das Ergebnis kann auch rein in der Sprache der reellen Algebra formuliert

werden, als Aussage über Quadratsummendarstellungen von positiven linea-

ren Polynomen:

Theorem. Sei S(p) konvex mit nichtleerem Inneren. Angenommen es exis-

tiert ein d ∈ N, so dass jedes auf S(p) nichtnegative lineare Polynom ` in

QM(p)d liegt. Dann hat S(p) nur exponierte Seiten.

Im weiteren Verlauf der Arbeit untersuchen wir nicht-abgeschlossene Menge.

Über solche Mengen gibt es bisher praktisch keine Ergebnisse. Es stellt sich

aber heraus, dass viele dieser Mengen spektraedrische Schatten sind. Seien

dazu zunächst

S ′ ⊆ S ⊆ Rn

zwei konvexe Mengen. Wir definieren

(S ′ " S) := S \
⋃

F∩S′=∅

F =
⋃

F∩S′ 6=∅

relint(F ).

Die Vereinigung läuft dabei über alle Seiten von S, und relint(F ) steht für

das relative Innere von F . Man entfernt also von S alle Seiten, die S ′ nicht

berühren. Unser Hauptergebnis ist dann:

Theorem. Falls S ′ und S spektraedrische Schatten sind, so ist auch

(S ′ " S)

ein spektraedrischer Schatten.

Als spezieller Fall, wenn man S ′ = {a} setzt, für ein a ∈ relint(S), erhält

man:

Korollar. Wenn S ein spektraedrischer Schatten ist, so auch relint(S).

Auch ein umgekehrtes Resultat kann man beweisen:
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Lemma. Falls S ein spektraedrischer Schatten ist, so auch der Abschluss S.

Die meisten Ergebnisse dieser Arbeit sind bereits publiziert. Sie entstam-

men den Arbeiten Gouveia und Netzer [14], Netzer [37], Netzer, Plaumann

und Schweighofer [38], Netzer, Plaumann und Thom [39], Netzer und Sinn

[40] sowie Netzer and Thom [41].
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