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1. Introduction and main result.

In calculus of variations or optimal control, relaxation of a given problem means to define a new problem,

whose feasible domain contains the original one (possibly in the sense of imbedding), whose objective is

lower semicontinuous with respect to a suitable topology, and whose minimal value is the same as in the

original problem. 01) Consequently, the relaxed problem admits global minimizers and can be accessed by

direct methods. 02) In optimal control, the proof of the necessary optimality conditions in the form of the

Pontryagin principle is based on the relaxation of the given problem as well. 03)

There are two well-introduced approaches for the relaxation of variational or control problems. Assuming

that the objective of the problem reads as

F (x) =

∫
Ω

f(s, x(s), Jx(s)) ds (1.1)

with Ω ⊂ Rm and f(s, ξ, v) : Ω × Rn×Rnm → R ∪{ (+∞) }, the first approach requires the replacement

of the integrand f — depending on the dimensions m and n — by its convex or quasiconvex envelope with

respect to the variable v 04) while the feasible domain of the original problem remains unchanged. The second

approach is the introduction of generalized controls (Young measures) µ ∈ Y(K) ⊂ L∞
[

Ω , rca (Rnm)
]

(see

Section 2 below). 05) Here arises a new problem with the functional

F̃ (x,µ) =

∫
Ω

∫
Rnm

f(s, x(s), v) dµs(v) ds (1.2)

and the additional constraint

∂xi(s)/∂sj =

∫
Rnm

vij dµs(v) for a. a. s ∈ Ω, 1 6 i 6 n , 1 6 j 6 m. (1.3)

The aim of the present paper is to pursue the second approach and to provide a relaxation theorem for multi-

dimensional control problems of Dieudonné-Rashevsky type in terms of Young measures. Recently, problems

of this kind have found fruitful applications in mathematical image processing 06) but they arise as well in

the geometric theory of convex bodies, 07) in material sciences 08) or in underdetermined boundary value

01) See e. g. [Buttazzo 89 ] , pp. 2 ff. and pp. 16 ff., and [Gamkrelidze 78 ] .
02) Cf. [Dacorogna 08 ] , p. 3.
03) We refer to [ Ioffe/Tichomirow 79 ] , pp. 85 ff. and 213 ff., and [Ginsburg/Ioffe 96 ] , p. 92, Definition 3.2. and

Theorem 3.3.
04) Cf. [Dacorogna 08 ] , p. 416 ff., Theorem 9.1., and p. 432, Theorem 9.8. and Remark 9.9., (i).
05) [Gamkrelidze 78 ] , pp. 21 ff. and 135 ff., and [Pedregal 97 ] , pp. 10 ff. and 133 ff.
06) [Angelov 11 ] , [Brune/Maurer/Wagner 09 ] , [Franek/Franek/Maurer/Wagner 12 ] , [Wagner 09d ] ,

[Wagner 10 ] and [Wagner 11a ] .
07) [Andrejewa/Klötzler 84a ] , [Andrejewa/Klötzler 84b ] , p. 149 f.
08) [Lur’e 75 ] , pp. 240 ff., [Ting 69a ] , p. 531 f., [Ting 69b ] , [Wagner 96 ] , pp. 76 ff.
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problems for implicit first-order PDE’s. 09) In abstract form, they may be stated as follows:

(P)1 : F (x, u) =

∫
Ω

f(s, x(s), u(s)) ds −→ inf ! ; (x, u) ∈W 1,p
0 (Ω,Rn)× L

p
(Ω,Rnm) ; (1.4)

Jx(s) =

 ∂x1(s)/∂s1 ... ∂x1(s)/∂sm
...

...
∂xn(s)/∂s1 ... ∂xn(s)/∂sm

 = u(s) ∈ K ⊂ Rnm for a. a. s ∈ Ω (1.5)

where n > 1, m > 1, Ω ⊂ Rm is a bounded (strongly) Lipschitz domain and K ⊂ Rnm is a convex body

containing the origin in its interior.

In analogy to the basic problem of multidimensional calculus of variations, the control problem (P)1 requires

quasiconvex instead of convex relaxation unless n = 1 or m = 1. In previous research, the author pointed

out that the appropriate tool for the quasiconvex relaxation of (P)1 is the lower semicontinuous quasiconvex

envelope f (qc)(s, ξ, v) of the integrand f with respect to the variable v (cf. Definition 3.2. below) 10) but

provided a Young measure relaxation theorem in a special case only. 11) The open question how the relaxation

of (P)1 with a general integrand f(s, ξ, v) can be expressed in terms of Young measures will be answered in

the following Theorem 1.1.

Theorem 1.1. (Young measure relaxation of (P)1 ) Assume that the data in (P)1 satisfy the following

properties: n > 1, m > 1, 1 6 p <∞, Ω ⊂ Rm is a bounded Lipschitz domain with o ∈ int (Ω), K ⊂ Rnm is

a convex body with o ∈ int (K), and the integrand f(s, ξ, v) : Ω ×Rn×Rnm → R ∪{ (+∞) } belongs to the

class F̃K described in Definition 3.3. below. Together with (P)1, we consider two further control problems:

(P)2 : F (qc)(x, u) =

∫
Ω

f (qc)(s, x(s), u(s)) ds −→ inf ! ; (x, u) ∈W 1,p
0 (Ω,Rn)× L

p
(Ω,Rnm) ; (1.6)

G(x, u) = Jx(s)− u(s) = 0 (∀) s ∈ Ω ; u(s) ∈ K (∀) s ∈ Ω ; (1.7)

(P)3 : F̃ (x,µ) =

∫
Ω

∫
K

f(s, x(s), v) dµs(v) ds −→ inf ! ; (x,µ) ∈W 1,p
0 (Ω,Rn) × G(K) ; (1.8)

G̃(x,µ) = Jx(s)−
∫

K

v dµs(v) = 0 (∀) s ∈ Ω (1.9)

where G(K) ⊂ L∞
[

Ω , rca (K)
]

is the set of gradient Young measures described in Definition 2.1., 2) below.

Denote by m1, m2 and m3 the minimal values of the problems (P)1, (P)2 and (P)3, respectively. Then

1) The three minimal values m1, m2 and m3 coincide.

2) The problems (P)2 and (P)3 admit global minimizers. Moreover, if (x̂, û) is a global minimizer of (P)1 or

(P)2 then ( x̂ , { δû(s) } ) is a global minimizer of (P)3.

The main ingredient for the proof is a characterization theorem for gradient Young measures supported on

K (Theorem 2.9.) arising as an appropriate generalization of a result of Kinderlehrer/Pedregal. In view

of its importance, we will provide a complete proof of this theorem as well. Two further elements of the proof

of Theorem 1.1. are Wagner’s representation theorem for the lower semicontinuous quasiconvex envelope,

which expresses f (qc)(s, ξ, v) as the minimum of the values 〈 f(s, ξ, v) , ν 〉 where ν runs through a certain

set of probability measures (Theorem 3.8.), and Schäl’s measurability theorem for the “optimal” selector

(Theorem 4.4.).

09) [Dacorogna/Marcellini 97 ] , [Dacorogna/Marcellini 98 ] and [Dacorogna/Marcellini 99 ] .
10) [Wagner 09a ] − [Wagner 09c ] and particularly [Wagner 11b ] , pp. 192 ff.
11) [Wagner 09c ] , p. 617, Theorem 4.2., with f = f(v).
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The structure of the paper is as follows: After closing this introduction with a synopsis of notations, we

will collect in Section 2 the needed facts about gradient Young measures and then prove the announced

characterization theorem. In Section 3, we will summarize the properties of unbounded quasiconvex functions

and the lower semicontinuous quasiconvex envelope of the integrand. Finally, we turn in Section 4 to the

investigation of the Young measure relaxed control problem (P)3 and to the proof of Theorem 1.1.

Notations.

We denote by C
k
(Ω,Rr), L

p
(Ω,Rr) and W

k,p
(Ω,Rr) the spaces of r-dimensional vector functions whose

components are k-times continuously differentiable, belong to L
p
(Ω,R) or to the Sobolev space of L

p
(Ω,R)-

functions with weak derivatives up to kth order in L
p
(Ω,R), respectively (k ∈ { 0, 1, ... }, 1 6 p 6 ∞).

Moreover, W
1,p
0 (Ω,Rr) denotes the subspace of the compactly supported functions within W

1,p
(Ω,Rr). The

components of x ∈ W
1,∞
0 (Ω,Rr) will be considered as Lipschitz functions with zero boundary values. 12)

The symbols xsj and ∂x/∂sj may denote the classical as well as the weak partial derivative of x by sj .

Jx denotes the Jacobi matrix of the function x. rca (K) denotes the space of all (signed) Radon measures

supported on K, and rca pr (K) ⊂ rca (K) denotes the subset of probability measures on K. The notions for

Young measures will be introduced in Subsection 2.a) below.

The extended real line R = R ∪{ (+∞) } will be equipped with the natural topological and order structures

where (+∞) is the greatest element. Throughout the paper, for all functions f : Rnm → R, which are allowed

to take the value (+∞), we will assume that the effective domain dom (f) = { v ∈ Rnm
∣∣ f(v) < (+∞) } is

nonempty. The restriction of the function f to the subset A of its range of definition is denoted by f
∣∣A. A

convex body K ⊂ Rnm will be understood as a convex, compact set with nonempty interior. 13)

Finally, we will frequently use three nonstandard notations. “{xN } , A” denotes a sequence {xN } with

members xN ∈ A. If A ⊆ Rr then the abbreviation “ (∀) t ∈ A” has to be read as “for almost all t ∈ A”

resp. “for all t ∈ A except a r-dimensional Lebesgue null set”. The symbol o denotes, depending on the

context, the zero element resp. the zero function of the underlying space.

2. Characterization of gradient Young measures on K.

a) Basic definitions and properties.

We consider the Bochner space L
∞[

(Ω) , rca (K)
]

of weakly∗-measurable, measure-valued maps µ : Ω →
rca (K), which is equipped with its weak∗-topology. 14)

Definition 2.1. 1) (Young measures on K, generalized controls) 15) An element µ ∈ L∞
[

(Ω) , rca (K)
]

is called a Young measure iff there exists a so-called generating sequence {uN } , L∞(Ω,Rnm) with a) uN (s) ∈
K (∀) s ∈ Ω ∀N ∈ N and b) { δuN (s) }

∗−⇀µ within L
∞[

(Ω) , rca (K)
]
. Consequently, Young measures are

precisely those elements of L
∞[

(Ω) , rca (K)
]
, which take values within the subset rca pr (K) of probability

measures on K. The set of all Young measures on K is denoted by Y(K).

12) [Evans/Gariepy 92 ] , p. 131, Theorem 5.

13) See e. g. [Schneider 93 ] .

14) We refer to [Edwards 65 ] , pp. 557 ff. and 586 ff. In particular, by ibid., p. 590, Theorem 8.18.3., the duality

relation L∞
[

Ω , rca (K)
] ∼= (

L1
[

(Ω) , C0(K,R)
] )∗

holds true. Consequently, on L∞
[

(Ω) , rca (K)
]
, the different

measurability concepts for Bochner spaces agree, and the weak∗-topology on the unit ball is metrizable.

15) See [Gamkrelidze 78 ] pp. 23 ff., and [Müller 99 ] , pp. 115 ff.
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2) (Gradient Young measures on K, generalized gradient controls) 16) An element µ ∈ Y(K) is called

a gradient Young measure iff there exists a sequence {xN } , W 1,∞
(Ω,Rn) with the properties a) JxN (s) ∈ K

(∀) s ∈ Ω ∀N ∈ N and b) { δJxN (s) }
∗−⇀µ within L

∞[
(Ω) , rca (K)

]
. The subset of all gradient measures

is denoted by G(K) ⊂ Y(K).

Definition 2.2. (First moment of a Young measure, underlying deformation) For µ ∈ Y(K), the

measurable, essentially bounded function u : Ω→ Rnm defined through

u(s) =

∫
K

v dµs(v) (2.1)

is called the first moment of µ.

Obviously, the first moment of a gradient Young measure is a gradient u = Jx as well. The generating

data {xN } , W 1,∞
(Ω,Rn) of a gradient Young measure can be always chosen in such a way that a) xN ⇒

x̂ ∈ W
1,∞

(Ω,Rn), b) JxN
∗−⇀Jx̂ within L

∞
(Ω,Rnm) and JxN (s), Jx̂(s) ∈ K (∀) s ∈ Ω ∀N ∈ N, c)

{ δJxN (s) }
∗−⇀µ within L

∞[
(Ω) , rca (K)

]
and d) Jx̂(s) =

∫
K
v dµs(v) (∀) s ∈ Ω.

Lemma 2.3. (Modification of generating sequences for gradient Young measures) 1) If µ ∈
G(K) possesses a first moment Jx arising from a function x ∈ W 1,∞

0 (Ω,Rn) then there exists a sequence

{ x̃N } , W 1,∞
0 (Ω,Rn) with the properties of Definition 2.1., 2).

2) Assume that there exist sequences {wN } , K and {xN } , W 1,∞
(Ω,Rn) with wN → w ∈ K, wN+JxN (s) ∈

K (∀) s ∈ Ω ∀N ∈ N and { δwN+JxN (s) }
∗−⇀µ ∈ G(K). If the first moment of µ ∈ G(K) takes the shape

w+Jx(s) where x ∈W 1,∞
0 (Ω,Rn) then there exist sequences { w̃N } , int (K) and { x̃N } , W 1,∞

0 (Ω,Rn) with

a) w̃N → w, b) w̃N + Jx̃N (s) ∈ K (∀) s ∈ Ω ∀N ∈ N and c) { δw̃N+Jx̃N (s) }
∗−⇀µ ∈ G(K).

Proof. Part 1) is a special case of Part 2) with wN = w = o. In order to prove 2), we may assume that the

generating data for µ fulfill xN ⇒ x and JxN
∗−⇀Jx. Using subdomains

ΩK = (1− 1/K) Ω ⊂ Ω (2.2)

and Lipschitz functions ηK : Ω→ R with

ηK(s)

= 1 | s ∈ ΩK ;
∈ [ 0 , 1 ] | else
= 0 | s ∈ ∂Ω ;

and
∣∣∇ηK(s)

∣∣ 6 C1K (∀) s ∈ Ω , (2.3)

we define the functions yN,K ∈W 1,∞
0 (Ω,Rn) through

yN,K(s) = xN (s) ηK(s) =⇒ JyN,K(s) = ηK(s) JxN (s) + xN (s)⊗∇ηK(s) . (2.4)

From (2.3) it follows that∣∣xN (s)⊗∇ηK(s)
∣∣ 6 C1 C2K · sup

s∈Ω \ΩK

∣∣xN (s)
∣∣ , (2.5)

and since xN converges uniformly to x ∈W 1,∞
0 (Ω,Rn), we may selcet a diagonal sequence { yN(K),K } such

that

sup
s∈Ω \ΩK

∣∣xN(K)(s)
∣∣ 6 1

C1 C2K2
. (2.6)

16) [Kinderlehrer/Pedregal 91 ] , p. 333, and [Müller 99 ] , p. 126, Definition 4.1.
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Consequently, wN(K) + JyN(K),K(s) = wN(K) + ηK(s) JxN(K)(s) + xN(K)(s) ⊗ ∇ηK(s) belongs to K +

B(o, 1/K) since ηK(s) 6 1, and we find a monotonically increasing sequence of numbers λK ∈ ( 0 , 1 ) with

limK→∞ λK = 1 and λK
(
wN(K) + JyN(K),K(s)

)
∈ K (∀) s ∈ Ω ∀K ∈ N. Now the assertion of Part

2) is true with w̃K = λK wN(K) ∈ int (K) and x̃K = λK yN(K),K ∈ W
1,∞
0 (Ω,Rn): We have w̃K → w,

x̃K ⇒ x, w̃K + Jx̃K(s) ∈ K (∀) s ∈ Ω ∀K ∈ N and Jx̃K(s) − JxN(K)(s) → 0 (∀) s ∈ Ω. It follows that

{ δw̃K+Jx̃K(s) }
∗−⇀µ, and the proof is complete.

The metrization of the weak∗-topologies on rca pr (K) and Y(K) can be described as follows:

Lemma 2.4. (Metrization of the weak∗-topologies on rca pr (K) and Y(K)) Assume that countably

many functions f1 ≡ 1/|Ω |, fr ∈ C0
(Ω,R) ∩ L

1
(Ω,R) with ‖ fr ‖L1(Ω,R) · |Ω | = 1 for r > 2 as well as

gl ∈ C0
(K,R) ∩ W 1,∞

(K,R) with ‖ gl ‖C0(K,R) = 1 and Lipschitz constants Ll > 0 for l > 1 are given such

that { fr } resp. { gl } form dense subsets of the unit balls of L
1
(Ω,R) resp. C

0
(K,R) with respect to their

norm topologies.

1) 17) Then the function σ : rca pr (K)× rca pr (K)→ R defined by

σ(ν′, ν′′) =
∞∑
l=1

1

2l (1 + Ll)

∣∣∣ ∫
K

gl(v)
(
dν′(v)− dν′′(v)

) ∣∣∣ (2.7)

is a metrics on rca pr (K) with { νN } , rca pr (K)
∗−⇀ν ⇐⇒ σ(νN , ν)→ 0.

2) 18) Further, the function % : Y(K) × Y(K)→ R defined by

%(µ′,µ′′) =
∞∑
r=1

∞∑
l=1

1

2r+l (1 + Ll)

∣∣∣ ∫
Ω

∫
K

fr(s) gl(v)
(
dµ′s(v)− dµ′′s (v)

)
ds
∣∣∣ (2.8)

is a metrics on Y(K) with {µN } , Y(K)
∗−⇀µ ⇐⇒ %(µN ,µ)→ 0.

It follows that

{µN } , Y(K)
∗−⇀µ ⇐⇒

∫
Ω

∫
K

f(s) g(v) dµNs (v) ds→ 0 ∀ f ∈ L1
(Ω,R) ∀ g ∈ C0

(K,R) . (2.9)

In particular, %(µN ,µ) → 0 implies σ(µNs , µs) → 0 for almost all s ∈ Ω. With respect to this topology,

the sets Y(K) and G(K) are sequentially compact. 19) Obviously, the subsets
{
{ δu(s) } ∈ Y(K)

∣∣ u ∈
L
∞

(Ω,Rnm) , u(s) ∈ K (∀) s ∈ Ω
}

and
{
{ δJx(s) } ∈ G(K)

∣∣ x ∈ W 1,∞
(Ω,Rn) , Jx(s) ∈ K (∀) s ∈ Ω

}
lie

dense in Y(K) and G(K), respectively.

b) The mean value theorem for gradient Young measures.

It is possible to assign to every gradient Young measure an “averaged” Young measure (with respect to

s), which turns out to be a constant gradient Young measure. In the proof of the characterization theorem

(Theorem 2.9.) below, the following proposition will be employed.

Proposition 2.5. (Mean value theorem in G(K) ) 20) Assume that Ω ⊂ Rm is a bounded Lipschitz

domain with o ∈ int (Ω). We consider sequences {wN } , K and {xN } , W 1,∞
0 (Ω,Rn), which satisfy a) wN →

17) [Wagner 09b ] , p. 446 f., Definition 2.1. and Theorem 2.2.
18) [Wagner 09b ] , p. 448, Definition 2.4., and [Wagner 06 ] , p. 52, Lemma 4.9.
19) Cf. [Berliocchi/Lasry 73 ] , p. 144, Proposition 1 (i), and [Wagner 09b ] , p. 450, Theorem 2.8., 2).
20) [Wagner 09b ] , p. 450 f., Theorems 2.9. and 2.11.
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w ∈ K, b) wN + JxN (s) ∈ K (∀) s ∈ Ω ∀N ∈ N, and c) { δwN+JxN (s) }
∗−⇀µ ∈ G(K). Then there exists a

further sequence { x̃N } , W 1,∞
0 (Ω,Rn) with the following properties:

1) limN→∞ ‖ x̃N ‖C0(Ω,Rn) = 0 .

2) wN + Jx̃N (s) ∈ K (∀) s ∈ Ω ∀N ∈ N.

3) {wN + Jx̃N } generates a constant gradient Young measure ν = { ν } ∈ G(K), which may be understood

as the s-average of µ:

lim
N→∞

∫
Ω

g(wN + JxN (s) ) ds =

∫
Ω

∫
K

g(v) dµs(v) ds (2.10)

= lim
N→∞

∫
Ω

g(wN + Jx̃N (s) ) ds =

∫
Ω

∫
K

g(v) dν(v) ds ∀ g ∈ C0
(K,R) .

4) The first moment of { ν } is w =
∫

K
v dν.

5) The average operator A : G(K)→ rca pr (K) defined by A(µ) = ν is linear and continuous with respect to

the weak∗-topologies: σ(A(µ′) , A(µ′′) ) 6 C %(µ′,µ′′) ∀µ′, µ′′ ∈ G(K).

c) Characterization of gradient Young measures on K: disintegration and assembling.

In this subsection, we develop further ideas from [Kinderlehrer/Pedregal 91 ] about disintegration and

assembling of gradient Young measures. In their paper, they do not specified the range of the generating

gradient sequences; consequently, we must check whether the constructions can be still performed under

consideration of the additional gradient constraint Jx(s) ∈ K (∀) s ∈ Ω. This turns out to be possible for

both the disintegration and the assembling theorem. While the the first theorem and its proof can be taken

over without alterations, the proof of the latter requires some careful refinements.

Proposition 2.6. (Disintegration of gradient Young measures supported on K) 21) Assume that

o ∈ int (Ω). If µ ∈ G(K) then for almost all s0 ∈ Ω there exists a sequence { yN } , W 1,∞
(Ω,Rn) with a)

JyN (s) ∈ K (∀) s ∈ Ω ∀N ∈ N and b) { δJyN (s) }
∗−⇀ν ≡ {µs0 } as a constant gradient Young measure.

In short: A gradient Young measure takes almost everywhere values which occur in constant Young gradient

measures.

Proof. By definition, for µ ∈ G(K) there exists a sequence {xN } , W 1,∞
(Ω,Rn) with JxN (s) ∈ K ∀N ∈ N

(∀) s ∈ Ω and { δJxN (s) }
∗−⇀µ. Fixing s0 ∈ int (Ω), we choose a number K0 ∈ N such that s0 + s/K0 ∈ Ω

∀ s ∈ Ω. For all K > K0, we consider the functions

yN,K(s) = K ·
(
xN
(
s0 + s/K

)
− xN (s0)

)
∈W 1,∞

(Ω,Rn) , (2.11)

which satisfy particularly

JyN,K(s) = JxN
(
s0 + s/K

)
∈ K ∀N ∈ N ∀K > K0 (∀) s ∈ Ω . (2.12)

Now it can be shown in complete analogy to [Kinderlehrer/Pedregal 91 ] , p. 338 f., that an appropriate

subsequence of { JyN(K),K } generates the constant gradient Young measure ν = {µs0 } which, consequently,

belongs to G(K) together with µ.

Proposition 2.7. (Assembling of gradient Young measures supported on K) 22) Assume that o ∈
int (Ω). Consider a Young measure µ ∈ Y(K) with a) ν ≡ {µs } is a constant gradient Young measure for

21) Generalization of [Kinderlehrer/Pedregal 91 ] , p. 338, Theorem 2.3.
22) Generalization of [Kinderlehrer/Pedregal 91 ] , p. 351, Theorem 6.1.
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almost all s ∈ Ω and b) there exists a function x̂ ∈ W 1,∞
(Ω,Rn) with Jx̂(s) =

∫
K
v dµs(v) ∈ K (∀) s ∈ Ω.

Then µ belongs to G(K).

Proof. • Step 1. Lemma 2.8. 23) For a bounded Lipschitz domain Ω ⊂ Rm and a m-dimensional Lebesgue

null set N ⊂ Ω, consider countably many functions fr,l ∈ L1
(Ω,R) and rK : Ω \ N → ( 0 , 1 ). Then there

exist countably many points sK,M ∈ Ω\N and numbers εK,M ∈ ( 0 , rK(sK,M ) ) with the following properties:

a) For all K ∈ N, the sets
(
sK,M+εK,M Ω

)
⊂ Ω are mutually disjoint, and the set NK = Ω \

⋃∞
M=1

(
sK,M+

εK,M Ω
)

has measure zero.

b) For all r, l ∈ N, it holds that

∫
Ω

fr,l(s) ds = lim
K→∞

∞∑
M=1

fr,l(s
K,M ) ·

∣∣ εK,M Ω
∣∣ . (2.13)

• Step 2. Choice of test functions. We choose countable sets of test functions ϕr ∈ L1
(Ω,R)∩ W 1,∞

(Ω,R)

and gl ∈ C0
(K,R) ∩ W 1,∞

(K,R) such that the family {ϕr · gl } r,l lies dense in L
1[

Ω , C
0
(K,R)

]
. Denote

‖ϕr ‖C0(Ω,R) = Cr, ‖ gl ‖C0(K,R) = Cl and the Lipschitz constants of ϕr and gl by Lr and Ll. Using the

“values” µs ∈ rca pr (K) of µ and the functions gl, we define the functions

g̃l(s) =

∫
K

gl(v) dµs(v) , (2.14)

which, by measurability of µ, belong to L
1
(Ω,R) for all l ∈ N. Consequently, the functions

fr,l(s) = ϕr(s) · g̃l(s) =

∫
K

ϕr(s) gl(v) dµs(v) (2.15)

belong to L
1
(Ω,R) as well.

• Step 3. Consequences of the properties of the first moment Jx̂ of µ. By Rademacher’s theorem, 24) the

Lipschitz function x̂ is differentiable in all its components for all s ∈ int (Ω) \ N0 where the set N0 ⊂ Ω has

measure zero. Then

N = ∂Ω ∪ N0 ∪ { s ∈ int (Ω)
∣∣ Jx̂(s) 6=

∫
K

v dµs(v) or {µs } /∈ G(K) } (2.16)

is still a null set. Consequently, for every s ∈ Ω \ N and every K ∈ N, we find a number 0 < rK(s) < 1/2K

with∣∣∣ x̂( s+ ε z )− x̂(s)

ε
− Jx̂(s)T z

∣∣∣ 6 1

C1K2
∀ z ∈ Ω ∀ ε ∈ ( 0 , rK(s) ) =⇒ (2.17)∣∣ x̂( s+ ε z )− x̂(s)− ε Jx̂(s)T z

∣∣ 6 ε

C1K2
∀ z ∈ Ω ∀ ε ∈ ( 0 , rK(s) ) . (2.18)

Applying now Lemma 2.8. to the null set N from (2.16) and the families { fr,l } and { rK } , we obtain families

{ sK,M } , Ω and { εK,M } , R with 0 < εK,M < rK(sK,M ) and the properties a) and b) from above, which

imply particularly that∫
Ω

fr,l(s) ds = lim
K→∞

∞∑
M=1

ϕr(s
K,M ) g̃l(s

K,M ) ·
∣∣ εK,M Ω

∣∣ ∀ r, l ∈ N . (2.19)

• Step 4. A generating gradient sequence for µ. With appropriate numbers 0 < cK < 1, we define subsets

ΩK = (1− cK) Ω ⊂ Ω with
∣∣ΩK ∣∣ =

K − 1

K

∣∣Ω ∣∣ (2.20)

23) [Kinderlehrer/Pedregal 91 ] , p. 351, Lemma 6.2.
24) [Evans/Gariepy 92 ] , p. 81, Theorem 2.
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and cutoff functions ηK ∈W 1,∞
(Ω,R) with

ηK(s)

= 0 | s ∈ ΩK ;
∈ [ 0 , 1 ] | else
= 1 | s ∈ ∂Ω ;

and
∣∣∇ηK(s)

∣∣ 6 2K (∀) s ∈ Ω . (2.21)

By assumption, for the constant gradient Young measures νK,M = {µsK,M } , there are generating data

{xN,K,M } , W 1,∞
(Ω,Rn) with JxN,K,M (s) ∈ K ∀N ∈ N (∀) s ∈ Ω, xN,K,M ⇒ Jx̂(sK,M )T s and

{ δJxN,K,M (s) }
∗−⇀ {µsK,M } . Define now functions (2.22)

yK(s) =


(
x̂(sK,M ) + εK,M xN(K,M),K,M

( s− sK,M
εK,M

))
·
(

1− ηK
( s− sK,M

εK,M

))
+ x̂(s) · ηK

( s− sK,M
εK,M

)
| s ∈

(
sK,M + εK,M Ω

)
x̂(s) | else

wherein N(K,M) will be specified in the estimates (2.26) and (2.41) below. Obviously, yk belongs to W
1,∞

(Ω,

Rn) together with x̂ and xN(K,M),K,M since ηK are Lipschitz as well. For the derivatives of yK , we get

JyK(s) = JxN,K,M
( s− sK,M

εK,M

)(
1− ηK

( s− sK,M
εK,M

))
+ Jx̂(s) · ηK

( s− sK,M
εK,M

)
(2.23)

+
1

εK,M
·
(
x̂(s)− x̂(sK,M )− εK,M Jx̂(sK,M )T

( s− sK,M
εK,M

))
⊗∇ηK

( s− sK,M
εK,M

)
+
(
Jx̂
( s− sK,M

εK,M

)
− xN,K,M

( s− sK,M
εK,M

))
⊗∇ηK

( s− sK,M
εK,M

)
for almost all s ∈

(
sK,M + εK,M Ω

)
and JyK(s) = Jx̂(s) else. The first two summands form a convex

combination of elements of K, thus remaining within K. For the third summand, we infer from (2.18):

∣∣∣ 1

εK,M
·
(
x̂(s)− x̂(sK,M )− εK,M Jx̂(sK,M )T

( s− sK,M
εK,M

))
⊗∇ηK

( s− sK,M
εK,M

) ∣∣∣
6

1

εK,M
∣∣ x̂(s)− x̂(sK,M )− εK,M Jx̂(sK,M )T

( s− sK,M
εK,M

) ∣∣ · C1

∣∣∇ηK( s− sK,M
εK,M

) ∣∣ (2.24)

6
C1

εK,M
∣∣ x̂(sK,M + εK,M z)− x̂(sK,M )− εK,M Jx̂(sK,M )T z

∣∣ · 2K 6 2

K
(2.25)

by substituting z = (s− sK,M )/εK,M . For the last summand, the uniform convergence of xN,K,M allows to

find an index N(K,M) such that

∣∣∣ ( Jx̂( s− sK,M
εK,M

)
− xN,K,M

( s− sK,M
εK,M

))
⊗∇ηK

( s− sK,M
εK,M

) ∣∣∣ (2.26)

6
∣∣ Jx̂( s− sK,M

εK,M

)
− xN,K,M

( s− sK,M
εK,M

) ∣∣ · C1

∣∣∇ηK( s− sK,M
εK,M

) ∣∣ 6 2

K

for all s ∈ Ω and for all N > N(K,M). Summing up, we find that

JyK(s) ∈ K + B(o, 4/K) (∀) s ∈ Ω . (2.27)

Consequently, there is a monotonically increasing sequence of numbers λK ∈ ( 0 , 1 ) with limK→∞ λK = 1

such that JyK ∈ K can be guaranteed after replacing xN(K,M),K,M by λK xN(K,M),K,M , thus shrinking the

sum of the first two summands in (2.23).
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• Step 5. A suitable subsequence of { Jyk } generates µ. We investigate

I(r, l,K) =

∫
Ω

ϕr(s) gl( Jy
K(s) ) ds =

∞∑
M=1

∫
( sK,M+εK,M Ω )

ϕr(s) gl( Jy
K(s) ) ds

=
∞∑
M=1

(
εK,M

)m ∫
Ω

ϕr( s
K,M + εK,M z ) · gl( JyK( sK,M + εK,M z ) ) dz (2.28)

=
∞∑
M=1

(
εK,M

)m
ϕr( s

K,M + εK,M zK,M )

∫
Ω

gl( Jy
K( sK,M + εK,M z ) ) dz (2.29)

with zK,M ∈ Ω, cf. [Wagner 06 ] , p. 57. Inserting (2.23), we may continue as follows:

I(r, l,K) =
∞∑
M=1

(
εK,M

)m
ϕr( s

K,M + εK,M zK,M )
(∫

ΩK

gl( Jx
N(K,M),K,M (z) ) dz (2.30)

+

∫
Ω\ΩK

gl( Jy
K( ... ) ) dz −

∫
Ω\ΩK

gl( Jx
N(K,M),K,M (z) ) dz

)
= T1(r, l,K) + T2(r, l,K) + T3(r, l,K) with (2.31)

T1(r, l,K) =
∞∑
M=1

(
εK,M

)m
ϕr(s

K,M )

∫
Ω

gl( Jx
N(K,M),K,M (z) ) dz ; (2.32)

T2(r, l,K) =
∞∑
M=1

(
εK,M

)m
ϕr(s

K,M )
(∫

Ω\ΩK

gl( Jy
K( ... ) ) dz −

∫
Ω\ΩK

gl( Jx
N(K,M),K,M (z) ) dz

)
; (2.33)

T3(r, l,K) =
∞∑
M=1

(
εK,M

)m (
ϕr( s

K,M + εK,M zK,M )− ϕr(sK,M )
)
·
(
...
)
. (2.34)

Let us estimate first T2(r, l,K) and T3(r, l,K). For T2(r, l,K), we obtain from (2.20)

∣∣T2(r, l,K)
∣∣ =

∣∣∣ ∞∑
M=1

(
εK,M

)m
ϕr(s

K,M )
(∫

Ω\ΩK

gl( Jy
K( ... ) ) dz −

∫
Ω\ΩK

gl( Jx
N(K,M),K,M (z) ) dz

) ∣∣∣ (2.35)

6
( ∞∑
M=1

(
εK,M

)m ) · Cr · ∣∣Ω \ ΩK
∣∣ · 2Cl 6 Cr Cl 2

K
= C2(r, l) · 1

K
(2.36)

since Lemma 2.8. implies particularly that
∑∞

M=1

(
εK,M

)m
= 1. Further, we get

∣∣T3(r, l,K)
∣∣ 6 ∣∣∣ ∞∑

M=1

(
εK,M

)m (
ϕr( s

K,M + εK,M zK,M )− ϕr(sK,M )
)

(2.37)

·
(∫

ΩK

gl( Jx
N(K,M),K,M (z) ) dz +

∫
Ω\ΩK

gl( Jy
K( ... ) ) dz

) ∣∣∣
6
( ∞∑
M=1

(
εK,M

)m ) · Lr · εK,M · sup
z∈Ω

∣∣ z ∣∣ · Cl ∣∣Ω ∣∣ 6 C3(r, l) εK,M 6 C3(r, l)
1

2K
. (2.38)

Further, for every K ∈ N we may determine an index M(K) such that

∞∑
M=M(K)

(
εK,M

)m
6

1

K
. (2.39)

For the finitely many indices M = 1, ... , M(K)− 1, we modify the numbers N(K,M) as follows: Denoting

by µN,K,M ∈ rca pr (K) the average of the Young measure { δJxN,K,M (s) } according to Proposition 2.5., the

continuity of the average operator implies

%
(
{ δJxN,K,M (s) } , {µsK,M }

)
→ 0 =⇒ σ

(
µN,K,M , µsK,M

)
→ 0 (2.40)



10

where σ( · , · ) is defined as in Lemma 2.4. Now we may enlarge the numbers N(K,M) until

σ
(
µN,K,M , µsK,M

)
6

1

K
∀N > N(K,M) (2.41)

holds. Consequently, we get∣∣∣ ∫
K

gl(v) dµN(K,M),K,M (v)−
∫

K

gl(v) dµsK,M (v)
∣∣∣ 6 2l+1 (1 + Ll) ·

1

K
. (2.42)

Summing up, we obtain

I(r, l,K) =
∞∑
M=1

(
εK,M

)m
ϕr(s

K,M )

∫
Ω

∫
K

gl(v) dµsK,M (v) dz + T2(r, l,K) + T3(r, l,K) (2.43)

+
M(K)−1∑
M=1

(
εK,M

)m
ϕr(s

K,M )

∫
Ω

(∫
K

gl(v) dµN(K,M),K,M (v)−
∫

K

gl(v) dµsK,M (v)
)
dz

+
∞∑

M=M(K)

(
εK,M

)m
ϕr(s

K,M )

∫
Ω

(∫
K

gl(v) dµN(K,M),K,M (v)−
∫

K

gl(v) dµsK,M (v)
)
dz =⇒∣∣∣ I(r, l,K)−

∞∑
M=1

(
εK,M

)m
ϕr(s

K,M )

∫
Ω

∫
K

gl(v) dµsK,M (v) dz
∣∣∣ (2.44)

6
∣∣T2(r, l,K)

∣∣ +
∣∣T3(r, l,K)

∣∣ +
(M(K)−1∑

M=1

(
εK,M

)m )
Cr ·

∣∣Ω ∣∣ · ∣∣∣ ∫
K

gl(v) dµN(K,M),K,M (v)

−
∫

K

gl(v) dµsK,M (v)
∣∣∣ +

( ∞∑
M=M(K)

(
εK,M

)m )
Cr ·

∣∣Ω ∣∣ · 2Cl
6 C2(r, l)

1

K
+ C3(r, l)

1

K
+ Cr

∣∣Ω ∣∣ · 2l+1 (1 + Ll)
1

K
+ 2Cr Cl

∣∣Ω ∣∣ 1

K
=⇒ (2.45)

lim
K→∞

∣∣∣ I(r, l,K)−
∞∑
M=1

(
εK,M

)m
ϕr(s

K,M )

∫
Ω

∫
K

gl(v) dµsK,M (v) dz
∣∣∣ = 0 . (2.46)

Finally, Lemma 2.8., b) implies that

lim
K→∞

∞∑
M=1

(
εK,M

)m
ϕr(s

K,M ) ·
∣∣Ω ∣∣ · ∫

K

gl(v) dµsK,M (v) (2.47)

= lim
K→∞

∞∑
M=1

(
εK,M

)m
ϕr(s

K,M ) ·
∣∣Ω ∣∣ · g̃l(sK,M ) (2.48)

= lim
K→∞

∞∑
M=1

ϕr(s
K,M ) g̃l(s

K,M )
∣∣ εK,M Ω

∣∣ =

∫
Ω

∫
K

ϕr(s) gl(v) dµs(v) ds . (2.49)

Thus { JyK } generates indeed µ, and the proof is complete.

Propositions 2.6. and 2.7. can be combined into the following theorem:

Theorem 2.9. (Characterization of gradient Young measures on K) A Young measure µ ∈ Y(K)

belongs to G(K) iff its first moment is the gradient Jx of a function x ∈ W 1,∞
(Ω,Rn) and almost all of its

values µs arise from constant gradient Young measures belonging to G(K).
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3. The lower semicontinuous quasiconvex envelope of the integrand f(s, ξ, v) .

a) Quasiconvex functions with unbounded values.

In the treatment of multidimensional control problems of Dieudonné-Rashevsky type, it is useful to work

with an extended notion of quasiconvexity, which can be applied to functions taking the value (+∞) outside

of the control domain K ⊂ Rnm. Consequently, we start with the following definition:

Definition 3.1. (Quasiconvex functions with unbounded values) 25) A function f : Rnm → R with

the following properties is said to be quasiconvex:

a) dom (f) ⊆ Rnm is a nonempty Borel set;

b) f
∣∣dom (f) is Borel measurable and bounded from below on every bounded subset of dom (f);

c) for all v ∈ Rnm, f satisfies Morrey’s integral inequality

f(v) 6
1

|Ω |

∫
Ω

f( v + Jx(t) ) dt ∀x ∈W 1,∞
0 (Ω,Rn) , (3.1)

or equivalently

f(v) = inf
{ 1

|Ω |

∫
Ω

f( v + Jx(t) ) dt
∣∣ x ∈W 1,∞

0 (Ω,Rn) , v + Jx(t) ∈ Rnm (∀) t ∈ Ω
}
. (3.2)

Here Ω ⊂ Rm is a bounded Lipschitz domain.

We adopt the convention that the integral
∫

A
(+∞) dt takes the values zero or (+∞) if either A ⊆ Rm is a

m-dimensional Lebesgue null set or has positive measure. If dom (f) = K is a convex body then the set of

“test functions” within Morrey’s integral inequality (3.2) allows for the obvious restriction 26)

f(v) = inf
{ 1

|Ω |

∫
Ω

f( v + Jx(t) ) dt
∣∣ x ∈W 1,∞

0 (Ω,Rn) , v + Jx(t) ∈ K (∀) t ∈ Ω
}

(3.3)

for all v ∈ K. In the same spirit, the definition of the quasiconvex envelope can be generalized:

Definition 3.2. (Lower semicontinuous quasiconvex envelope f (qc) for functions with unbounded

values) 27) To a function f : Rnm → R bounded from below, we define the lower semicontinuous quasiconvex

envelope f (qc) : Rnm → R through (3.4)

f (qc)(v) = sup
{
g(v)

∣∣ g : Rnm → R quasiconvex and lower semicontinuous, g(w) 6 f(w) ∀w ∈ Rnm
}
.

This definition is motivated by the observation that any finite, quasiconvex function g : Rnm → R is con-

tinuous from the outset. 28) If a measurable function f is bounded from below and takes only values in R

then Definition 3.2. coincides with the usual definition of the quasiconvex envelope, 29) and the function f (qc)

is quasiconvex and continuous as well. In general, however, it is a matter of proof to ensure that f (qc) is a

25) [Wagner 09a ] , p. 73, Definition 2.9., as a specification of [Ball/Murat 84 ] , p. 228, Definition 2.1., in the

case p = (+∞). If f takes only values in R then Definition 3.1. agrees with the usual definition of quasiconvexity,

cf. [Dacorogna 08 ] , p. 156 f., Definition 5.1., (ii).
26) [Wagner 09a ] , p. 74, Theorem 2.11., 2).
27) [Wagner 09a ] , p. 76, Definition 2.14., (2).
28) [Dacorogna 08 ] , p. 159, Theorem 5.3., (iv).
29) Cf. [Dacorogna 08 ] , p. 156 f., Definition 5.1., ii).



12

quasiconvex function in the sense of Definition 3.1. and is, consequently, admissible in the process of its own

forming. If so, then f (qc) is the largest quasiconvex, lower semicontinuous function below f , and it satisfies

the inequality f c(v) 6 f (qc)(v) 6 f(v) for all v ∈ Rnm. 30)

b) The lower semicontinuous quasiconvex envelope for f(s, ξ, v).

In order to ensure the desired behaviour of the lower semicontinuous quasiconvex envelope, we specify the

following function class F̃K.

Definition 3.3. (Function class F̃K) 31) Let Ω ⊂ Rm be a bounded Lipschitz domain and K ⊂ Rnm a

convex body with o ∈ int (K). We say that a function f(s, ξ, v) : Ω × Rn × Rnm → R ∪{ (+∞) } belongs to

the class F̃K iff there exists a m-dimensional Lebesgue null set N ⊂ Ω with:

a) f(s, ξ, v) = (+∞) for all (s, ξ, v) ∈
(

Ω \ N
)
× Rn ×

(
Rnm \K

)
,

b) f(s, ξ, v) < (+∞) for all (s, ξ, v) ∈
(

Ω \ N
)
× Rn ×K,

c) the restriction f
∣∣ ( (Ω \ N

)
× Rn ×K

)
is Borel measurable with respect to s and continuous with respect

to (ξ, v), and

d) f satisfies the growth condition∣∣ f(s, ξ, v)
∣∣ 6 A(s) + B(ξ, v) ∀ (s, ξ, v) ∈ Ω ×Rn ×K (3.5)

where A ∈ L1
(Ω,R), A

∣∣ int (Ω) is continuous, and B is bounded on every bounded subset of Rn ×K.

As a consequence, the lower semicontinuous quasiconvex envelope of f ∈ F̃K, which is formed with respect

to the variable v, obeys the following properties:

Proposition 3.4. (Properties of f (qc) for f ∈ F̃K) 32) Let f ∈ F̃K be given. Then for every fixed (s0, ξ0) ∈(
Ω \ N

)
×Rn it holds that

1) f c(s0, ξ0, v) 6 f (qc)(s0, ξ0, v) 6 f(s0, ξ0, v) for all v ∈ Rnm, which implies particularly f (qc)(s0, ξ0, v) =

(+∞) for all v ∈ Rnm \K.

2) f (qc)(s0, ξ0, v) : Rnm → R is quasiconvex in the sense of Definition 3.1. Moreover, it is the largest lower

semicontinuous, quasiconvex function below f(s0, ξ0, v).

c) Representation of the lower semicontinuous quasiconvex envelope by probability measures.

It is well-known that the convex envelope of a function f(s, ξ, v) ∈ F̃K with respect to the variable v admits

the representation f c(s0, ξ0, w) = Min {
∫

K
f(s0, ξ0, v) dν(v)

∣∣ ν ∈ Sc(w) ⊂ rca pr (K) } where Sc(w) = { ν ∈
rca pr (K)

∣∣ ∫
K
v dν(v) = w }. 00) For the lower semicontinuous quasiconvex envelope, this assertion has an

analogon where ν is allowed to run through an appropriate subset S(qc)(w) ⊆ Sc(w) only. The following

definitions and theorems establish a close connection between the lower semicontinuous quasiconvex envelope

and gradient Young measures.

Definition 3.5. (The set-valued map S(qc)) 33) For given w ∈ K, the set S(qc)(w) ⊆ rca pr (K) consists of

all probability measures ν ∈ rca (K) with the following properties: There exist sequences {wN } , int (K) and

30) [Wagner 09a ] , p. 77, Theorems 2.18., (1) and 2.19.
31) [Wagner 11b ] , p. 191, Definition 1.1., 2).
32) [Wagner 11b ] , p. 198, Theorem 2.10., 1) and 2).
00) Cf. [Wagner 09b ] , p. 444.
33) Synopsis of [Wagner 09b ] , p. 452, Definition 3.1. and Lemma 3.2., and p. 459, Theorem 3.9., 2).
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{xN } , W 1,∞
0 (Ω,Rn) with a) limN→∞ wN = w, b) xN ⇒ o, c) wN + JxN (s) ∈ K (∀) s ∈ Ω ∀N ∈ N and

d) { δwN+JxN (s) }
∗−⇀ν ≡ { ν } ∈ G(K) as a constant gradient Young measure.

Proposition 3.6. (Properties of S(qc)( · ) ) Let K ⊂ Rnm be a convex body with o ∈ int (K).

1) 34) The sets S(qc)(w) are nonempty, weak∗-closed and convex for all w ∈ K.

2) 35) The set-valued map S(qc) : K→ rca pr (K) is continuous on int (K) and upper semicontinuous on K.

Proposition 2.7. and Theorem 2.9. may be complemented by the following assertion:

Proposition 3.7. (Characterization of constant gradient Young measures) ν = { ν } ∈ Y(K) is a

constant gradient Young measure iff there exists w ∈ K such that ν ∈ S(qc)(w).

Proof. If ν ∈ G(K) is a constant gradient Young measure then its first moment takes the form∫
K

v dνs(v) ≡ w ∈ K (3.6)

by convexity of the integral. 36) Consequently, we may apply Lemma 2.3., 2) to the generating data of ν, thus

confirming that ν matches Definition 3.5. with ν ∈ S(qc)(w). Conversely, any measure ν ∈ S(qc)(w) allows for

the generation of a gradient Young measure { ν } = ν ∈ G(K).

Now we may state the announced representation theorem for f (qc)(s, ξ, v).

Theorem 3.8. (Representation theorem for f (qc) if f ∈ F̃K) Assume that Ω ⊂ Rm is a bounded

Lipschitz domain, K ⊂ Rnm is a convex body with o ∈ int (K), and f(s, ξ, v) is a function belonging to the

class F̃K. Then for every fixed (s0, ξ0) ∈
(

Ω \ N
)
×Rn and for all w ∈ K, we have the representation

f (qc)(s0, ξ0, w) = Min
{∫

K

f(s0, ξ0, v) dν(v)
∣∣ ν ∈ S(qc)(w)

}
. (3.7)

Proof. As a consequence of Definition 3.3., f(s0, ξ0, v) is continuous on K as a function of v and (+∞) outside

of K for almost all s0 ∈ Ω and all ξ0 ∈ Rn. Now the assertion of Theorem 3.8. is implied by [Wagner 09b ] ,

p. 444, Theorem 1.4.

4. Investigation of the relaxed control problem (P)3.

a) The control-to-state mapping.

We now turn to the investigation of the relaxed control problem (P)3 from Section 1. Our first observation is

the continuity of the control-to-state mapping, which assigns to every feasible generalized control µ ∈ G(K)

that function x ∈W 1,∞
0 (Ω,Rn), which satisfies (1.9) together with µ.

Proposition 4.1. (Assignment of the feasible state as a linear, continuous operator) We study

(P)3 in the analytical situation specified in Theorem 1.1. Then the operator T : G(K) → W
1,∞
0 (Ω,Rn)

assigning to every feasible generalized control µ ∈ G(K) the integral x ∈ W 1,∞
0 (Ω,Rn) of its first moment

Jx ∈ L∞(Ω,Rnm) is well-defined, linear and continuous.

Proof. Consider first the operator M : G(K) → L
∞

(Ω,Rnm) assigning to µ ∈ G(K) its first moment

u ∈ L
∞

(Ω,Rnm). Obviously, M is linear. In order to prove continuity, we may assume without loss of

34) [Wagner 09b ] p. 452, Theorem 3.4., and p. 459, Theorem 3.10., 1).
35) [Wagner 09b ] , p. 452, Theorem 3.6., and p. 460, Theorem 3.12., 1).
36) [Bourbaki 52 ] , Chap. IV, § 6, p. 204, Corollaire.
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generality that the Lipschitz functions gij(v) = vij are part of the sequence { gl } used in the definition of

the metrics %( · , · ) and σ( · , · ) in Lemma 2.4. Then, applying the mean value theorem (Proposition 2.5.) to

µ′, µ′′ ∈ G(K) and denoting the average operator by A, we calculate

∣∣u′(s)− u′′(s) ∣∣ =
∣∣∣ ∫

K

v
[
dµ′s(v)− dµ′′s (v)

] ∣∣∣ 6 C ·
∑
i,j

∣∣∣ ∫
K

vij
[
dA(µ′)(v)− dA(µ′′)(v)

] ∣∣∣ (4.1)

6 σ
(
A(µ′) , A(µ′′)

)
6 C %(µ′, µ′′) =⇒ (4.2)

‖M(µ′)−M(µ′′) ‖L∞(Ω,Rnm) = ‖u′ − u′′ ‖L∞(Ω,Rnm) = ess sup
s∈Ω

∣∣u′(s)− u′′(s) ∣∣ 6 C %(µ′, µ′′) , (4.3)

and M is continuous. If µ ∈ G(K) is feasible in (P)3 then its first moment takes the form u = Jx with

x ∈ W 1,∞
0 (Ω,Rn), and the operator I : L

∞
(Ω,Rnm) → W

1,∞
0 (Ω,Rn) with I(Jx) = x is well-defined and

linear as well while its continuity follows from the Poincaré inequality. 37) Consequently, the composition

T = I ◦M is linear and continuous as well, and the proof is complete.

b) Compactness of the feasible domain.

As a consequence of Proposition 4.1., we may confirm the compactness of the feasible domain B3 of (P)3.

Proposition 4.2. (Boundedness of the feasible domain) Consider again (P)3 in the analytical situation

specified in Theorem 1.1. Then the feasible domain B3 ⊂W 1,∞
0 (Ω,Rn)× G(K) is bounded in the product of

the W
1,∞
0 -norm topology and the metric topology on G(K) generated by %.

Proof. Note first that, due to the assumptions about the functions fr and gl in Lemma 2.4., Y(K) itself is

bounded in the metrics (2.8) since

%(µ′,µ′′) 6
∞∑
r=1

∞∑
l=1

1

2r+l (1 + Ll)

∫
Ω

∣∣ fr(s) ∣∣ ∫
K

∣∣ gl(v)
∣∣ ( dµ′s(v) + dµ′′s (v)

)
ds (4.4)

6
∞∑
r=1

∞∑
l=1

1

2r+l (1 + Ll)

∫
Ω

2
∣∣ fr(s) ∣∣ · ‖ gl ‖C0(K) ds 6 2

∞∑
r=1

∞∑
l=1

1

2r+l (1 + Ll)
6 2 . (4.5)

Consequently, from (4.3), (4.5) and the Poincaré inequality we get for arbitrary (x′,µ′), (x′′,µ′′) ∈ B3

‖x′ − x′′ ‖W 1,∞
0 (Ω,Rn) 6 C ‖ Jx′ − Jx′′ ‖W 1,∞

0 (Ω,Rn) 6 C̃ %(µ′, µ′′ ) 6 2 C̃ , (4.6)

and B3 is bounded together with G(K) ⊂ Y(K).

Corollary 4.3. (Sequential compactness of the feasible domain) Under the assumptions of Proposi-

tion 4.2., the feasible domain B3 of (P)3 is sequentially compact in the product of the weak∗-topologies on

W
1,∞
0 (Ω,Rn) and G(K).

Proof. From Proposition 4.2. and the sequential compactness of G(K), we obtain immediately the sequential

compactness of B3 in the weak∗-product topology.

c) Proof of Theorem 1.1.

For the convenience of the reader, we repeat Schäl’s theorem about the measurability of the optimal selector.

37) [Evans 98 ] , p. 275, Theorem 1, holds true together with the Rellich-Kondrachov theorem even on a bounded

Lipschitz domain, cf. [Adams/Fournier 07 ] , p. 168, Theorem 6.3.
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Theorem 4.4. (Measurability of the optimal selector) 38) Let Ω ⊂ Rm be the closure of a bounded

domain. Assume that [ X , σ ] is a compact, separable metric space containing a countable, dense subset X̃.

Recall that a measurable set-valued map S : Ω → P(X) with nonempty, closed images, whose intersections

S(s) ∩ X̃ are dense in S(s) for all s ∈ Ω, is called separable. Consider a Carathéodory function g(s, ν) : Ω×
X → R and a set-valued map S : Ω → P(X) with nonempty, closed images, which satisfy the following

assumptions:

a) for every s ∈ Ω there exists an “optimal” element ν̂ ∈ S(s) with g(s, ν̂) = inf { g(s, ν)
∣∣ ν ∈ S(s) }, and

b) the set-valued map S admits an approximation by a sequence of separable set-valued maps SN : Ω→ P(X)

with limN→∞ SN (s) = S(s) for all s ∈ Ω where the limit is taken in the sense of a Painlevé-Kuratowski.39)

Then there exists a Lebesgue measurable function h : Ω→ X (an “optimal selector”) with

h(s) ∈ S(s) and g(s, h(s)) = inf
{
g(s, ν)

∣∣ ν ∈ S(s)
}
. (4.7)

for all s ∈ Ω.

We are now in position to prove the relaxation theorem (Theorem 1.1.) about the problems (P)1, (P)2 and

(P)3.

Proof of Theorem 1.1. • Step 1. (P)2 and (P3 admit finite minimal values and global minimizers. For

(P)2, this has been already proven in [Wagner 11b ] , p. 193, Theorem 1.4. For (P)3, the finiteness of the

minimal value is a consequence of Proposition 4.2. and the boundedness of the objective F̃ : W
1,∞
0 (Ω,Rn)×

G(K) → R. Consequently, (P)3 admits a minimizing sequence { (xN ,µN ) } , and from Corollary 4.3. we

conclude that we may pass to a feasible limit element (x̂, µ̂) along a suitable subsequence { (xN
′
,µN

′
) } .

Moreover, by the Sobolev imbedding theorem, 40) we may assume that xN
′

converges uniformly, and thus

limN ′→∞ F̃ (xN
′
,µN

′
) = F̃ (x̂, µ̂) = m3 holds.

• Step 2. The inequality m2 > m3. Consider a minimizing sequence { (xN , uN ) } of (P)2 with

m2 + 1/N > F (qc)(xN , uN ) > m2 ∀N ∈ N . (4.8)

From Theorem 3.8., we get

F (qc)(xN , uN ) =

∫
Ω

f (qc)(s, xN (s), uN (s) ) ds =

∫
Ω

Min
ν ∈ S(qc)

(
uN (s)

) ∫
K

f(s, xN (s), v) dν(v) ds (4.9)

=

∫
Ω

∫
K

f(s, xN (s), v) dνNs (v) ds (4.10)

where νNs ∈ rca pr (K) is determined by∫
K

f(s, xN (s), v) dνNs (v) = Min
ν ∈ S(qc)

(
uN (s)

) ∫
K

f(s, xN (s), v) dν(v) = Min
ν ∈ S(qc)

(
JxN (s)

) ∫
K

f(s, xN (s), v) dν(v) . (4.11)

If the family νN = { νNs } selected in (4.11) is measurable then, by Theorem 2.9., νN belongs to G(K)

since every measure ν ∈ S(qc)(s) arises from a constant gradient Young measure { ν } ∈ G(K), and the first

38) [Schäl 74 ] , p. 220, Theorem 3.
39) Cf. [Aubin/Frankowska 90 ] , p. 41, Definition 1.4.6.
40) [Adams/Fournier 07 ] , p. 85 f., Theorem 4.12., II.
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moment of { νNs } is given by
∫

K
v dνNs (v) = JxN (s) for almost all s ∈ Ω. Then it would follow that the pair

(xN , { νNs } ) is feasible in (P)3, and we get

m2 + 1/N > F (qc)(xN , uN ) = F̃ (xN , { νNs } ) > m3 (4.12)

for arbitrary N ∈ N. Consequently, it must be checked whether it is possible to select a measurable fa-

mily in (4.11). In order to confirm this, we apply Theorem 4.4. to the following data: Ω ⊂ Rm, the set

X = rca pr (K) which becomes a compact, separable metric space together with the metrics σ arising from

the weak∗-topology, the Carathéodory function g(s, ν) =
∫

K
f(s, xN (s), v) dν(v) and the set-valued map

S(qc)(uN ( · ) ) : Ω → P
(

rca pr (K)
)
. In fact, as proven in [Wagner 09c ] , p. 618, the latter satisfies as-

sumptions a) and b) of Theorem 4.4. Thus it is possible to find a measurable family h = νN = { νNs } with

the property (4.11).

• Step 3. The inequality m3 > m1 > m2. Consider now a minimizing sequence { (xN ,µN ) } for (P)3 with

m3 + 1/N > F̃ (xN ,µN ) > m3 . (4.13)

By Definition 2.1., 2) and Lemma 2.3., µN ∈ G(K) can be approximated by gradient Young measures of

the form { δJxN,K(s) } with xN,K ∈W 1,∞
0 (Ω,Rn), and the continuity of the control-to-state mapping in (P)3

(Proposition 4.1.) and the continuity of F̃ with respect to both variables imply

m3 + 1/N + 1/K > F̃ (xN,K , { δJxN,K(s) } ) > m3 . (4.14)

Consequently, we get

m3 + 1/N + 1/K > F̃ (xN,K , { δJxN,K(s) } ) =

∫
Ω

∫
K

f(s, xN,K(s), v) dδJxN,K(s)(v) ds (4.15)

=

∫
Ω

f(s, xN,K(s), JxN,K(s)) ds = F (xN,K , JxN,K) > m1

for all N , K ∈ N after an appropriate choice of xN,K . From f(s, ξ, v) > f (qc)(s, ξ, v), we obtain F (x, u) >

F (qc)(x, u) for all feasible (x, u), thus it holds that m1 > m2. Summing up, we arrive at m1 = m2 = m3.

• Step 4. Completion of the proof. If (x̂, û) is a global minimizer of (P)1 then [Wagner 11b ] , p. 193,

Theorem 1.4., implies that (x̂, û) is a global minimizer of (P)2 as well, and vice versa. Now the proof of

Theorem 1.1. will be completed by the observation that for every global minimizer (x̂, û) of (P)2, it follows

that

m2 = F (qc)(x̂, û) = F (x̂, û) =

∫
Ω

f(s, x̂(s), û(s)) ds =

∫
Ω

∫
K

f(s, x̂(s), v) dδû(s)(v) ds (4.16)

= F̃ (x̂, { δû(s) } ) = m3 ,

and (x̂, { δJû(s) } ) is a global minimizer of (P)3.

Acknowledgement.

The present work has been supported within the project “Relaxation theorems and necessary optimality

conditions for semiconvex multidimensional control problems” by the German Research Council.



17

References.

1. [Adams/Fournier 07 ] Adams, R. A.; Fournier, J. J. F.: Sobolev Spaces. Academic Press / Elsevier; Amsterdam

etc. 2007, 2nd ed.
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