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I

Introduction

The notion of ε-representations or rather of ε-homomorphisms first
appeared in a book by Ulam [Ula60]. Therein the author asks the
following, very general question: “When is it true that the solution of
an equation differing slightly from a given one, must of necessity be
close to the solution of the given equation?”([Ula60], p. 63).

ε-representations arise when considering this question for the func-
tional equation π(gh) = π(g)π(h), which is satisfied by a representation
π : G → U(H) of a group G. The meaning of the “equation differing
slightly from a given one” is in this case interpreted as follows: The
group U(H) is equipped with a metric induced by the operator norm on
B(H). Instead of requiring the two elements π(gh) and π(g)π(h) to be
equal, their difference should be uniformly small in the operator norm.
Put differently, the original equation d(µ(gh), µ(g)µ(h)) = 0 is per-
turbed to become the inequality d(µ(gh), µ(g)µ(h)) ≤ ε. The objects
µ satisfying this new inequality will be called ε-representations. In the
spirit of Ulam’s question, it will be studied under which assumptions a
ε-representation is close to an actual representation. A group for which
this property holds, will be called strongly Ulam stable. As before, the
notion of two maps being close is defined by using the operator norm
on B(H).

The first result in this direction was given by Kazhdan [Kaz82].
He proved that amenable groups are strongly Ulam stable by showing
that any ε-representation of an amenable group is 2ε-close to an actual
representation. He also gave a first example of a group that is not
Ulam stable. Recently Burger, Ozawa and Thom proved that any
group containing the free group with two generators is not Ulam stable
[BOT10]. This leads to the question whether a non-amenable group
is necessarily not Ulam stable.

Furthermore, it was proved that there are groups containing the free
group, for which every finite dimensional ε-representation is close to a
representation [BOT10]. These groups are of the form G = SLn(OS)
for n ≥ 3, where OS is the localization of the ring of integers of a
number field O at a multiplicative subset S. A consequence of this
theorem is that infinite dimensional ε-representations will have to be
considered to prove the existence of non-trivial ε-representations for
non-amenable groups. Additionally, a new notion of Ulam stability
can be introduced, stating that all finite-dimensional ε-representation
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4 I. INTRODUCTION

are trivial. This leads to the question of which classes of groups satisfy
this property.

The purpose of the thesis in hand is to prove Ulam stability for
groups of the form SL2(A), for certain rings A. More explicitly, this
work will focus on the following theorem:

Theorem I.1. Let A be the localization of the ring of integers of a
number field at a multiplicative subset. Assume the ring A has infinitely
many units. Then SL2(A) is Ulam stable.

The basic idea for the proof of this theorem is taken from [BOT10].
Note that the groups SL2(A) are are not strongly Ulam stable, as they
contain a free group with two generators.

Overall, the following chapters are structured as follows.

(1) The first chapter presents a general introduction into the the-
ory of ε-representations and Ulam stability. After the basic
definitions, some known examples will be presented alongside
counterexamples of Ulam stable groups. In addition, the proof
of some lemmas for the behavior of Ulam stability under group
operations will be recapitulated.

(2) The second and longest part of the thesis is based on the ar-
ticle ’Bounded generation of SL(n, A) ’ by Dave Witte Morris
[Mor07]. The objective will be to reprove Theorem 5.26 of the
article. The importance of this theorem lies in its application
in the proof of the main theorem of this work.

(3) The last chapter will focus on the proof of the main Theorem
I.1 and conclude the thesis with a discussion of the result.



II

ε-Representations and Ulam stability

This chapter serves as a general introduction into the theory of ε-
representations and Ulam stability. Along with the definitions we will
present known examples and counterexamples for Ulam stability and
reprove some lemmas that appeared in [BOT10].

1. Basic definitions

The most fundamental definition is the definition of a ε-represen-
tation.

Definition II.1. Let H be a Hilbert space and ε > 0 a real number. A
ε-representation of a group G is a map µ : G → U(H) with µ(e) = 1,
which is almost multiplicative in the sense

def(µ) := sup
g,h∈G

‖µ(gh)− µ(g)µ(h)‖ ≤ ε,

where ‖·‖ denotes the operator norm on U(H). The dimension ofH will
be called the dimension of the ε-representation. Denote by Repε(H)
the set of all ε-representations for a fixed Hilbert space H. In the case
ε = 0, we recover the set of all representations on H, for which the
subscript ε will be suppressed.

Remark II.2. The condition µ(e) = 1 is not a strong restriction. If a
map µ is almost multiplicative, then

‖1− µ(e)‖ = ‖µ(e)− µ(e)µ(e)‖ ≤ ε.

Therefore, if we define a map µ̃ as

µ̃(g) :=

{
1 if g = e
µ(g) otherwise

then µ̃ is a 2ε-representation that has distance ε to µ and satisfies all
the conditions of definition II.1.

Very simple examples of ε-representations are actual representa-
tions or perturbations of representations. µ is called a δ-perturbation
of a representation π if the distance between µ and π in the operator
norm is small:

d(µ, π) := sup
g∈G

‖µ(g)− π(g)‖ ≤ δ

It is clear that a δ-perturbation µ of π is a ε-representation if δ ≤ ε
3
.
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6 II. ε-REPRESENTATIONS AND ULAM STABILITY

ε-representations that are perturbations of actual representations
are not particularly interesting and we would like to call such ε- repre-
sentations trivial. This evokes the following question:

Question 1. For which groups do non-trivial ε-representations exist?

However there are some problems with the definition of ε-represen-
tations. First, the definition of a trivial ε-representation is not precise
enough. Without specification of how the distance of the ε-representa-
tion to the nearest representation depends on ε, any ε-representation
is trivial, as the distance of any map into the group U(H) to the trivial
homomorphism is less or equal to 2.
Additionally, as we want to analyse the behavior in the limit where
ε tends to zero, the set of ε-representations for a fixed ε is of limited
interest.

These issues are solved by introducing the definition of Ulam sta-
bility, beginning with the following definition.

Definition II.3. Let G be a group and F a family of Hilbert spaces.
Define δFG : R≥0 → R≥0 to be the following function:

δFG(ε) := sup
H∈F

sup
µ∈Repε(H)

inf
π∈Rep(H)

{d(µ, π)}

Note that the value of the function δFG at 0 is always 0, because a
0-representation is an ordinary representation and the term d(µ, π) can
be minimized by taking π = µ.

It is now possible to define Ulam stability by using the function δFG .

Definition II.4 ([BOT10, Def. 2.1]). A group G is called strongly
Ulam stable if the function δFG is continuous at 0 for any choice of F .

If δFG is continuous for any family F of finite dimensional Hilbert
spaces, we call the group G Ulam stable.

In the following paragraphs, the index F will be suppressed, as
only the cases of F being either the family of all Hilbert spaces or
the family of all finite dimensional Hilbert spaces will be treated. It
will be assumed that any ε-representation is δG(ε)-close to some rep-
resentation and the context will show whether only finite dimensional
representations are considered.

The definition of Ulam stability can be rephrased as follows: A
group G being Ulam stable means that for any δ > 0 there is a ε > 0,
such that any ε-representation of G has distance at most δ to some
representation.

The definition also clearly shows that strong Ulam stability implies
Ulam stability, implying that Ulam stability is the weaker notion.

This allows to refine the Question 1 and to formulate the question
that forms the main interest of this thesis.

Question 2. Which groups are (strongly) Ulam stable?
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Some answers to this question will be given in the next section.

2. Examples of Ulam stable groups

In this section we present two examples of groups that are Ulam
stable, resp. strongly Ulam stable.

2.1. Amenable groups. The first and so far only known example
of strongly Ulam stable groups are amenable groups. The following
theorem was proved by Kazhdan:

Theorem II.5 (Kazhdan;[Kaz82]). Amenable groups are strongly Ulam
stable. More precisely, if ε ≤ 1

100
, then for any ε-representation µ of

an amenable group G there is a representation π, such that:

sup
g∈G

‖µ(g)− π(g)‖ ≤ 2ε

Interestingly, the obtained representation π, close to the ε-repre-
sentation µ, is unique up to conjugation (for ε sufficiently small). This
can be easily deduced from a theorem by Johnson, which will be proved
in the sequel (see Theorem IV.5).

2.2. SLn(R) for n ≥ 3. In contrast to amenable groups the groups
presented next are only Ulam stable.

First of all, consider a ring R of the following type: Let K be an
algebraic number field of finite degree k over Q. Take an order B in
K a multiplicative subset S ⊂ K (see definition III.30). Define R to
be R = BS−1. The groups of interest are of the form G = SLn(R) for
n ≥ 3. Note that these groups are neither amenable nor strongly Ulam
stable because they contain the free group with two generators F2 as
a subgroup (see lemma II.17). The following theorem was proved in
[BOT10].

Theorem II.6 (Burger, Ozawa, Thom;[BOT10]). If n ≥ 3, then the
group SL3(R) is Ulam stable, but it is not strongly Ulam stable.

This theorem will be refined in section IV for the case of n = 2,
with an additional condition on the ring R.

3. Examples of non- Ulam stable groups

We will now present two classes of groups that are not Ulam stable.
The first class consists of groups that have non-trivial quasimorphisms
and the second is the class of groups that are free products. Note that
later class is already contained in the first one, as free products ex-
hibit quasimorphisms (this can be deduced for example from a result
by Fujiwara [Fuj00]). This means that the two examples are not inde-
pendent. In the second case we rather obtain an alternative proof for
some special case than a new result.
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3.1. Quasimorphisms. Quasimorphisms can be regarded as a
commutative analog to ε-representation. A general discussion and ex-
amples of quasimorphisms can be found in section 2.2 of [Cal09]. The
reason we will look at quasimorphisms here is given in Lemma II.11,
which states that if a group has non-trivial quasimorphisms then it will
also have non-trivial ε-representations. In the following paragraph, the
definition of quasimorphisms will be given, followed by the proof of a
few well known lemmas that will simplify computations later on.

Definition II.7. Let G be a group. A quasimorphism is a map ϕ :
G→ R with bounded defect:

def(ϕ) := sup
g,h∈G

|ϕ(gh)− ϕ(g)− ϕ(h)| <∞

A quasimorphism ϕ is homogeneous, if ϕ(gn) = nϕ(g) for all n ∈ N

and g ∈ G.

Remark II.8. Note that the definition of a quasimorphism is sim-
ilar to the definition of a ε-representation. In place of almost mul-
tiplicative maps into the group of unitaries, we now consider almost
additive maps into the abelian group R. As a common generalisation,
the target group could be replaced by an arbitrary metric group (G, d)
and the defect of a map f : G → G could be defined as def(f) =
supg,h∈G d(f(gh), f(g)f(h)). Therefore, there is no need to introduce
an extra notation for the defect of a quasimorphism and we stick to
the one form def.

As for ε-representations, our main interest lies in quasimorphisms
that are not perturbations of homomorphisms. It is said that a quasi-
morphism ϕ is a perturbation of a homomorphism π, if the distance
between ϕ and π is finite, i.e. supg∈G |µ(g) − π(g)| < ∞. As the
set of quasimorphisms is a vector space, finding quasimorphisms that
are not homomorphisms comes down to the study of the quotient
QM(G)/(Hom(G;R)⊕ C1

b(G;R)). Here QM(G) is the set of all quasi-
morphisms, Hom(G;R) denotes the set of all homomorphisms from G
to R, and C1

b(G;R) is the space of all bounded maps from G to R.
Interestingly, this quotient can be described in terms of bounded coho-
mology as the kernel of the comparison map H2

b(G;R) → H2(G;R).
The next objective is to show the identity of the quotient from

above and the quotient QMh(G)/Hom(G;R). In this case, the space
QMh(G) is the space of homogeneous quasimorphisms. The following
lemmas will prove this statement.

Lemma II.9. Any quasimorphism is in bounded distance to a homo-
geneous quasimorphism.
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Proof. If ϕ is a quasimorphism, then we would like to define a
homogeneous quasimorphism, called the homogenization of ϕ, by

ϕ(g) := lim
i→∞

ϕ(g2
i

)

2i
.

We need to show the existence of this limit and that the map defined
in this way has bounded distance to ϕ. The first observation is that,
by the definition of the defect, we have

|ϕ(g2i)− 2ϕ(g2
i−1

)| ≤ def(ϕ).

Using the triangle inequality this gives for any j < i

|ϕ(g2i)− 2i−jϕ(g2
j

)| ≤
i−j∑

k=1

2k−1def(ϕ) = (2i−j − 1)def(ϕ).

Dividing this equation by 2i shows that ϕ(g2
n
)

2n
is a Cauchy sequence,

hence it is convergent and ϕ is well defined. If j = 0 is inserted in the

inequality above, obtain |ϕ(g2
n
)

2n
− ϕ(g)| ≤ def(ϕ) for any n ∈ N and

therefore |ϕ− ϕ| ≤ def(ϕ). This means that ϕ is in bounded distance
to ϕ, which in addition implies that ϕ is a quasimorphism.

The homogeneity of ϕ is proved by the following simple calculation:

|ϕ(gn)− nϕ(g)| = lim
i→∞

∣∣∣∣
1

2i

(
ϕ(gn2

i − nϕ(g2
i

))
)∣∣∣∣ = lim

i→∞

n− 1

2i
def(ϕ) = 0

�

A useful feature of homogeneous quasimorphisms is stated in the
next lemma.

Lemma II.10. A homogeneous quasimorphism is in bounded distance
to a homomorphism if and only if it is already a homomorphism.

Proof. Assume the existence of a homogeneous quasimorphism ϕ,
that is not a homomorphism. We need to show that its distance to any
homomorphism is unbounded. So let π be a homomorphism. Since
ϕ 6= π, there is an element g ∈ G such that |π(g)− ϕ(g)| = c > 0. For
n ∈ N it follows

|π(gn)− ϕ(gn)| = n|π(g)− ϕ(g)| = nc.

It follows that the distance between π and ϕ is arbitrarily large. �

We conclude that a group has non-trivial quasimorphisms, i.e.

QM(G)/(Hom(G;R)⊕ C1
b(G;R)) 6= {1},

if and only if there is a homogeneous quasimorphisms that is not a
homomorphism.

Now we can establish the connection between quasimorphisms and
Ulam stability.
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Lemma II.11 ([BOT10, Cor. 3.5]). If a group G has a non-trivial
quasimorphism, then G is not Ulam stable.

Proof. Denote by ϕ a homogeneous quasimorphism of G that
is not a homomorphism. We want to exponentiate ϕ to obtain one-
dimensional ε-representations. For t > 0 define the maps µt : G →
U1(C) by

µt := e2πitϕ.

In order to show that this defines ε-representations, the computation
of the defect is necessary. Under the assumption that t is sufficiently
small, it results:

def(µt) = sup
g,h∈G

|e2πitϕ(gh) − e2πit(ϕ(g)+ϕ(h))|
if t≈0

≤ |1− e2πit·def(ϕ)|

In the limit of t→ 0, thus def(µt) → 0. This proves that for any ε > 0
there is a tε, such that µt is a ε-representation for all t ≤ tε.

The next step is the estimation of the distance between µt and
an arbitrary homomorphism. For some δ > 0 fix t ∈ R, such that
def(tϕ) = tdef(ϕ) ≤ δ and let ν : G → U1(C) be a homomorphism.
Assume that δ is sufficiently small, e.g. δ ≤ 1

10
. Now choose a map

ψ : G→ R, that satisfies ν = e2πiψ. Furthermore ensure

sup
g∈G

|ψ(g)− tϕ(g)| ≤ 1
2
. (3.1)

This is no restriction because the integer part of ψ can be chosen arbi-
trarily. From the facts that tϕ is a homogeneous quasimorphism that
is not a homomorphism and that the distance between tϕ and ψ is
bounded, we deduce by Lemma II.10 that the defect of ψ is greater
than zero. In addition, as ν is a homomorphism, the defect of ψ has to
be an integer. The combination of the two results yields: def(ψ) ≥ 1.

Therefore the following estimation can be computed using the tri-
angle inequality in the second step:

1− δ ≤ def(ψ)− def(tϕ)

≤ sup
g,h∈G

| (ψ − tϕ)(gh)︸ ︷︷ ︸
agh

− (ψ − tϕ)(g)︸ ︷︷ ︸
ag

− (ψ − tϕ)(h)︸ ︷︷ ︸
ah

|

It follows that there have to be g, h ∈ G, such that the value of |agh −
ag − ah| is greater than 1− 2δ. This implies that a least for one of the
numbers the absolute value is greater or equal to (1−2δ)/3. Therefore:

sup
g∈G

|ψ(g)− tϕ(g)| ≥ 1−2δ
3

(3.2)

In combination with the condition of equation (3.1), this shows that
there is a g ∈ G such that:

|ν(g)− µt(g)| = |e2πi(ψ(g)−tϕ(g)) − 1| ≥ c(δ) > 0
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c(δ) denotes some constant that only depends on δ. If the parameter t
is restricted to an interval [0, s] for some s small enough, c = 1 can be
chosen as a constant, which then is independent of the parameter t. It
can be shown that c(δ) −→

√
3 as δ → 0.

Hence for any ε there is t ∈ [0, s], such that µt is a ε-representation
and the distance to an arbitrary homomorphism is at least 1. This
proves that G is not Ulam stable. �

As free groups have non-trivial quasimorphisms we obtain the fol-
lowing corollary.

Corollary II.12. Free groups Fn are not (strongly) Ulam stable for
n ≥ 2.

Of course there are many more examples of groups that have non-
trivial quasimorphisms (see e.g. [Cal09]). However we are not going to
present any of these example here, as the case of free groups is already
the most interesting for us.

3.2. Free Products. Corollary II.12 points out that free groups
are not Ulam stable. An alternative proof of this fact is given by a
construction by Rolli [Rol09] that shows that free groups, or, more
generally, free products of groups, have ε-representations in any di-
mension. This construction will be presented in this section.

At first fix some n ∈ N and let {Gi|i ∈ I} be a family of non-
trivial groups. Denote by Bδ(1) the ball of radius δ around the neutral
element in U(n):

Bδ(1) = {u ∈ U(n)|‖1− u‖ ≤ δ}
For any group Gi of the family choose a map µi : Gi → Bδ(1) ⊂ U(n)
with µi(g

−1
i ) = µi(gi)

−1 for all gi ∈ Gi. Note that there is at least
one map with this property that is not the trivial map 1 : g 7→ 1, as
soon as the cardinality of Gi is greater than 2. From now on it will be
assumed that there is at least one group in the family {Gi} with more
than 2 elements and that the family consists of at least two groups.
Denote by G = ∗i∈IGi the free product of the groups Gi.

Free products of groups are particularly interesting in that every
element of a free product has a unique factorization. So if g ∈ G is an
element of the free product, g can be written in a unique way as

g = g1g2 . . . gn,

where there are indices i(gj) ∈ I for j ≤ n, such that gj ∈ Gi(gj) and
i(gj) 6= i(gj±1). This allows to extend the maps µi to a ε-representation
µ : G → U(n) of the free product G = ∗i∈IGi. The value of µ at an
element g = g1 . . . gn is defined as

µ(g) := µi(g1)(g1)µi(g2)(g2) . . . µi(gn)(gn)
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By using the construction of the map µ, it can be shown that the
group G is not Ulam stable. More precisely the following lemma holds
for µ.

Lemma II.13 ([Rol09, Prop. 5.2]). The map µ : ∗i∈IGi → U(n) is
a 3δ-representation and is bounded away from any homomorphism by√
3− δ.

The proof makes use of the well known fact that U(n) does not
have small subgroups. This statement will be proved first.

Lemma II.14. The only subgroup H of U(n) that has distance less
than

√
3 to the identity is the trivial subgroup, i.e.:

sup
h∈H

‖h− 1‖ <
√
3 =⇒ H = {e}

Proof. First of all note that it is sufficient to consider cyclic sub-
groups. Furthermore, the statement clearly holds for n = 1.

Now let H = {ak|k ∈ N} be a cyclic subgroup of U(n) for arbitrary
n ∈ N. We can diagonalize a by conjugation with some unitary element,
i.e. there is a unitary element u ∈ U(n) and a diagonal matrix d ∈
U(n), such that d = uau∗. As the norm is invariant under conjugation
by unitary elements, H ′ = {dk|k ∈ N} has the same distance from
the identity as H. But as d is diagonal, it is possible to apply the
case of n = 1 to the entries of the diagonal to find that either all of
those entries are 1, or the group has distance greater than

√
3 from the

identity. �

We continue by proving Lemma II.13.

Proof of Lemma II.13: Let g = g1 . . . gn and h = h1 . . . hm be
two elements of G with their factorization. In order to estimate the
distance between µ(gh) and µ(g)µ(h), we will consider two cases:

(1) gn and h1 are not in the same group, so the factorization of gh
equals g1 . . . gnh1 . . . hm. It follows µ(gh) = µ(g)µ(h).

(2) There is some cancellation in the product, i.e. the factorization
of gh is gh = g1 . . . gn−kzhk+1 . . . hm, where z is an element of
a Giz for some iz ∈ I. Using the bi-invariance of the norm, we
can compute in this case:

‖µ(gh)− µ(g)µ(h)‖ = ‖µ(z)− µ(gn−k+1)µ(hk)‖
= ‖µiz(z)− µign−k+1

(gn−k+1)µihk (hk)‖
≤ 3δ

This shows that µ is a 3δ-representation.
The next task is to compute the distance of µ to an arbitrary ho-

momorphism. We will do this by using Lemma II.14. Assume ν is
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a homomorphism with ‖ν − µ‖ <
√
3 − δ. We compute, using the

condition µ(gi) ∈ Bδ(1):

sup
gi∈Gi

‖ν(gi)− 1‖ ≤ sup
gi∈Gi

(‖ν(gi)− µ(gi)‖+ ‖µ(gi)− 1‖) ≤
√
3 ∀i ∈ I

This means that the subgroup ν(Gi) is
√
3-close to the identity, hence

it is trivial by Lemma II.14. Therefore ν is trivial on the generating
set

⋃
i∈I Gi of G, implying that it is the trivial homomorphism:

ν(g) = 1 ∀g ∈ G

The condition ‖ν − µ‖ <
√
3 − δ now states that µ(G) has distance√

3− δ from 1:

sup
g∈G

‖g − 1‖ ≤
√
3− δ

Let g1 ∈ Gi1 and g2 ∈ Gi2 be two arbitrary non-trivial elements of
different groups (i1 6= i2). From the definition of µ it follows for every
k ∈ Z:

µ((g1g2)
k) = (µ(g1)µ(g2))

k

µ((g−1
2 g−1

1 )k) = (µ(g2)
−1µ(g1)

−1)k

The subgroup generated by the element µ(g1)µ(g2) thus lies in the
image of µ. It follows again by Lemma II.14 that this subgroup is
trivial. As the elements g1 and g2 were chosen arbitrarily, we conclude
that µ is the trivial map. This contradicts the assumptions and the
proof is completed. �

So far, only a fixed map µ was considered. Yet, if the same con-
struction is done for different values of δ, the Ulam stability of the
group G is obtained by considering the limit of δ → 0. This leads to
the following corollary, which is the final result of this section.

Corollary II.15. Let G = ∗i∈IGi be a free product that is not the group
D∞ = Z/2Z ∗ Z/2Z. Then G is not Ulam stable.

Note that the case where all factor groups are of order two does
not follow directly from the construction above. Instead we have to
rewrite the product as a free product of one factor D∞ and the rest of
the Z/2Z factors first.

Of course the case G = F2 is included in this corollary as F2 = Z∗Z.
This is useful do deduce non- strong Ulam stability for a much larger
class of groups by applying a lemma that will be proved in the next
section.
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4. Transfer properties of Ulam stability

This section comprises the proof of some results for the behavior of
Ulam stability under group operations.

The first observation is that Ulam stability is preserved under tak-
ing quotients.

Lemma II.16 ([BOT10, Lem. 2.2]). Let π : G → H be a surjective
homomorphism. Then (strong) Ulam stability of G implies (strong)
Ulam stability of H. In other words, quotients of (strongly) Ulam stable
groups are (strongly) Ulam stable.

Proof. Take a ε-representation µ : H → U(H). The map µ ◦ π
will thus be a ε-representation for G, given that def(µ ◦ π) = def(µ).
Let ν be a representation of G such that

sup
g∈G

‖µ ◦ π(g)− ν(g)‖ ≤ δ(ε) <
√
3.

Note that by Ulam stability of G, δ(ε) tends to zero if ε→ 0, and the
condition δ <

√
3 can be satisfied by choosing ε small enough. For

g ∈ Ker(π) this formula reads:

‖ν(g)n − 1‖ <
√
3 ∀n ∈ Z

Because Lemma II.14 also holds for U(H), ν(g) = 1 for all g ∈ Ker(π).
So ν factors through H, i.e. there is a representation ν0 : H → U(H),
such that ν = ν0 ◦ π. ν0 satisfies suph∈H ‖ν0(h) − µ‖ ≤ δ(ε), which
proves that H is Ulam stable. �

(Strong) Ulam stability thus behaves very nicely under taking quo-
tients. However, the case of subgroups has to be handled more carefully.
For example, it is not in general true that Ulam stability of a group im-
plies Ulam stability of its subgroups (counterexamples are the groups
SL2(A), see Chapter IV). An interesting result is the following.

Lemma II.17 ([BOT10, Cor. 2.7]). Let H ⊂ G be a subgroup of the
group G. If G is strongly Ulam stable, then H is Ulam stable.

The proof makes use of the possibility to induce ε-representations
for a group from ε-representations of a subgroup. Therefore, the defi-
nition of induced ε-representations is given beforehand.

Definition II.18 ([BOT10]). Let H be a subgroup of the group G.
For each left coset Hg of H choose a representative rHg and let R =
{rHg|Hg ∈ H\G} be the set of all those representatives. Note that
rHrHgh = rHgh.

Now let µ : H → U(H) be a ε-representation. We define the
induced ε-representation to be:

µ : G→ U(ℓ2(R,H))

µ(g) :=
(
f 7→

(
x 7→ µ(xg · r−1

Hxg)f(rHxg)
))
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Remark II.19. The induced map µ is indeed a ε-representation as the
following computation shows:

(µ(g)µ(h)f)(x) = µ(xg · r−1
Hxg)((µ(h)f)(rHxg))

= µ(xg · r−1
Hxg)µ(rHxgh · r−1

Hxgh)f(rHxgh)

≈ε µ(xgh · r−1
Hxgh)f(rHxgh) = (µ(gh)f)(x)

Here the notation ≈ε means that the left- and the right-hand side have
distance less or equal to ε.

The next lemma will be required in the proof of Lemma II.17.

Lemma II.20 ([BOT10, Lem. (2.6)]). Let π : G → U(H) be a
representation and p ∈ B(H) an orthogonal projection onto a finite
dimensional subspace such that

sup
g∈G

‖pπ(g)− π(g)p‖ < δ.

Then there is an orthogonal projection q ∈ B(H) that commutes with
π(g) for all g ∈ G and satisfies

‖p− q‖ ≤ 2δ

Proof. p is a finite rank operator and thus a Hilbert-Schmidt op-
erator. Now let G act on the space of Hilbert-Schmidt operators by
conjugation and let C be the convex hull of the orbit of p under this
action:

C = Conv({π(g)∗pπ(g)|g ∈ G})
Furthermore let C be the closure of C in the Hilbert-Schmidt norm.
Note that the assumption supg∈G ‖p−π(g)∗pπ(g)‖ < δ implies that the

set C is contained in the δ-ball Bδ(p) around p. In addition we have
C ⊂ {A ∈ B(H)|0 ≤ A ≤ 1}, as C is clearly contained in this set.
Thus

C ⊂ {A ∈ B(H)|‖A− p‖ ≤ δ, 0 ≤ A ≤ 1}
Now let q0 ∈ C be the circumcenter of C and q the projection onto the
support of q0. Because the circumcenter is unique and C is invariant
under the conjugation-action of H, q0 is a fixed point of the action.
This means that q0 commutes with G and the same holds for q.

Now we need to estimate the distance between q and p. However, as
the spectrum of the projection p only contains 0 and 1, we can conclude
from the condition ‖q0 − p‖ ≤ δ that the spectrum of q0 is a subset of
the union of [0, δ] and [1− δ, 1]. So we get

‖q − q0‖ ≤ δ,

from which it follows that

‖p− q‖ ≤ 2δ.
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This proves that q has all the required properties. �

We can now proceed by proving Lemma II.17.

Proof of Lemma II.17: Let µ : H → U(H) be a ε-representa-
tion for a finite dimensional Hilbert space H and let µ be the induced
map. By strong Ulam stability of G there is a representation ν that is
δ(ε) close to µ:

sup
g∈G

‖ν(g)− µ(g)‖ ≤ δ(ε)

It would be preferable to restrict ν to the subspace H = ℓ2({rHe},H)
in order to get a representation of the subgroup H. However, this is not
always possible becauseH is not always an invariant subspace. In other
words, the projection pH does not necessarily commute with ν(H). At
least it follows from the definition of the induced ε-representation that
µ(H) commutes with H and we get

‖pHν(h)− ν(h)pH‖ ≤ ‖pHν(h)− pHµ(h)‖+ ‖µ(h)pH − ν(h)pH‖
≤ 2δ(ε).

Therefore, it is possible to apply Lemma II.20 and obtain a projection
q that commutes with ν(H) and is close to pH:

‖pH − q‖ ≤ 4δ (4.1)

Now let u be the partial isometry of the polar decomposition pHq =
u|pHq|. Note that the range projection uu∗ and the support projection
u∗u coincide with the projections pH and q:

pH = uu∗, q = u∗u

This follows from the conditions Ker(pHq) = Ker(q) and Ker(qpH) =
Ker(pH), which are implied by (4.1). To see this, assume there was an
element x ∈ Ker(pHq), that is not in Ker(q). We can assume that x
is of norm one and lies in the subspace onto which q projects, hence
q(x) = x. But then ‖pHq(x)−q(x)‖ = 1 > 4δ, which is a contradiction.

We have 1 ≥ pH, which, together with (4.1), implies q ≥ qpHq ≥
(1 − 4δ)q. The same equation holds for the root

√
qpHq = |pHq| and

hence we get ‖|pHq| − q‖ ≤ 4δ. Now compute:

‖pH − u‖ ≤ ‖pH − pHq‖+ ‖pHq − u‖ = ‖pHpH − pHq‖+ ‖u|pHq| − uq‖
≤ ‖pH − q‖ · ‖pH‖+ ‖|pHq| − q‖ · ‖u‖ ≤ 4δ + 4δ

= 8δ

To finish the proof, define ν : H → U(H) as ν = uνu∗. By the previous
work ν is indeed a representation on H and it satisfies:

‖ν(h)− µ(h)‖ = ‖uν(h)u∗ − pHµ(h)pH‖
≤ ‖pHν(h)pH − pHµ(h)pH‖+ 16δ ≤ 17δ

�
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Lemma II.17 allows to enlarge the class of groups that are known
to be not strongly Ulam stable. Remember that by Corollary II.12 free
groups have one-dimensional ε-representations. We obtain:

Corollary II.21. Let G be a group, that contains a free group Fn n ≥ 2
as a subgroup. Then G is not strongly Ulam stable.

Corollary II.21 is the most important result of this section. It will
be applied to deduce that the groups SL2(A) studied in the last chapter
are not strongly Ulam stable. It is possible to get a slightly stronger
result than Lemma II.17 for subgroups of finite index: The proof of
Lemma II.17 implicates that the induced ε-representation of a finite
dimensional ε-representation for a finite index subgroup is again finite
dimensional, so we have:

Lemma II.22. Let H be a finite-index subgroup of G. If G is Ulam
stable then so is H.

As an immediate consequence we obtain:

Corollary II.23. If G is a group that contains a free group Fn for
n ≥ 2 as a finite index subgroup, then G is not Ulam stable.

We conclude this chapter with a result that will be used later when
proving that SL2(R) is Ulam stable.

Lemma II.24. Let H be a normal subgroup of G, whose quotient Q =
G/H is (strongly) Ulam stable. If κ, ε > 0 are small enough and µ :
G→ U(H) is a ε-representation with the property

‖µ(h)− 1‖ ≤ κ ∀h ∈ H,

then there is a representation π of G with ‖µ − π‖ ≤ κ + ε + δ(κ +
2ε). Here δ(ε) is the maximal distance of a ε-representation of Q to a
representation.

Proof. Denote by p : G→ Q the quotient map and let s : Q→ G
be a section. The composition of µ with s is a (κ+ 2ε)-representation
of Q:

‖µ(s(qp))−µ(s(q))µ(s(p))‖
≤‖µ(s(qp)s(p)−1s(q)−1s(q)s(p))− µ(s(q)s(p))‖+ ε

≤‖µ(s(qp)s(p)−1s(q)−1

︸ ︷︷ ︸
∈H

)µ(s(q)s(p))− µ(s(q)s(p))‖+ 2ε

≤κ+ 2ε

As Q is strongly Ulam stable, there is a representation π of Q with
‖µ ◦ s− π‖ ≤ δ(κ+ 2ε). The composition of π with the quotient map
p results in a representation of G that is (ε + κ + δ(κ + 2ε))-close to
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the original ε-representation µ:

‖µ(g)− π(p(g))‖ ≤‖µ(g)− µ(s(p(g)))‖+ δ(κ+ 2ε)

≤‖µ(g)− µ(g)µ(g−1s(p(g)))‖+ ε+ δ(κ+ 2ε)

≤ε+ κ+ δ(κ+ 2ε)

This proves the desired statement. �



III

Bounded Generation of SL2(R)

First, we would like to fix the some notations for this chapter.

Definition III.1. Let R be a commutative ring and I an ideal in R.
(1) SL2(R; I) is the subset of SL2(R) consisting of the matrices,

that are congruent to 1 mod I.
(2) e2(X) = {( 1 a

0 1 ) , (
1 0
a′ 1 ) |a, a′ ∈ X} is the set of elementary ma-

trices whose off-diagonal entries are elements of X ⊂ R.
(3) e⊳2 (X) is the set of e2(R)-conjugates of e2(X).
(4) E2(X) (resp. E⊳

2 (X)) will denote the subgroup generated by
the set e2(X) (resp. e⊳2 (X)). This means E⊳

2 (X) is the smallest
normal subgroup of E2(R) that contains e

⊳

2 (X).

Furthermore we introduce the following definition.

Definition III.2. Denote by WI the following subset of R2:

WI = {(a, b) | (a, b) ≡ (1, 0) mod I; aR + bR = R}
Remark III.3. A pair (a, b) ∈ R2 is in WI if and only if there are
c, d ∈ R, such that ( a bc d ) ∈ SL2(R; I). Indeed, since aR + bR = R,
x, y ∈ R can be chosen with ax + by = 1. Now define c = −by2 and
d = x+ bxy. Then d ≡ 1 mod I and ad− bc = 1, as desired.

1. Statement of the theorem and an outline of the proof

The objective of this chapter is to prove a theorem that can be found
in an article by Dave Witte Morris [Mor07], which itself is based on
unpublished work by Carter, Keller, and Paige [CKP92].

At the beginning of this chapter, the statement of the theorem will
be presented together with a brief sketch of the proof. The theorem is
concerned with a property called bounded generation, which is defined
as follows: Consider a group G and a symmetric subset X = X−1.
Denote by 〈X〉r the set of elements of G that are a product of at most
r elements of X.

Definition III.4. The group is said to be boundedly generated by a
symmetric subset K, if there is r ∈ N, such that 〈K〉r = G, i.e. every
element of G can be written as a word in K of word length less or equal
to r.

A basic example of bounded generation is given by the special linear
group SLn(F ) for a field F , as it can easily be shown that these groups

19
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are boundedly generated by the elementary matrices. Nevertheless, if
the field F is replaced by some arbitrary commutative ring R this is
in general no longer true. A counterexample is provided by the group
SL2(Z) following from the fact that SL2(Z) contains a free group as a
subgroup of finite index. However, SLn(Z) is boundedly generated by
the elementary matrices, if n ≥ 3 (see e.g. [BHV08], where bounded
generation is treated in the context of Kazhdan’s property T). This
leads naturally to the following question:

Question 3. For which rings R and n ∈ N do the elementary matrices
boundedly generate some subgroup of SLn(R)?

An answer to this question is given in [CKP92] and [Mor07]. The
authors prove that the elementary matrices e2(R) boundedly generate
a subgroup of SLn(R), provided that the ring R satisfies some ring
theoretic properties. This proof will be repeated here for the case
n = 2, as this is the situation that will occur in the proof of the main
theorem in chapter IV. Note however that the case n ≥ 3 is in some
respects included in this proof. The most difficult part of the proof
(which is showing the existence of a Mennicke symbol with some nice
properties) is much simpler under the condition n ≥ 3.

The theorem we are interested in is the following:

Theorem ([Mor07, Thm. 5.26]; [CKP92]). Let A = BS−1 be the
localization of an order in an algebraic number field. If A has infinitely
many units, then for any ideal I in A the elementary matrices e⊳2 (I)
boundedly generate a subgroup in SL2(R).

Two main components are necessary for the proof. The first is the
compactness theorem of first order logic (see III.37), the second is the
theory of Mennicke symbols which will be presented in the next section.

The proof can be summarized as follows: The compactness theorem
allows to prove bounded generation in a much more general context
(see Thm. III.39). The essential condition in the statement of this
general theorem is that the subgroup that is supposed to be boundedly
generated is of finite index in the ambient group. It follows that, to
prove bounded generation by elementary matrices, it is only needed
to bound the size of the quotient SL2(R; I)/E

⊳

2 (I). This can be done
in two steps by using the theory of Mennicke symbols. The first step
is to show that under certain conditions for the ring R any Mennicke
symbol has finite range, which is done in section 4. The second step
then is to find a Mennicke symbol whose range is exactly the quotient
SL2(R; I)/E

⊳

2 (I). This is the hardest part of the proof and will be done
in section 5.

2. Mennicke Symbols

Mennicke symbols were originally defined by Mennicke [Men65]
and used by Bass, Milnor, and Serre in [BMS67] to find a solution
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to the congruence subgroup problem. In the context of bounded gen-
eration Mennicke symbols make their appearance in Theorem III.23,
which states that the quotient SL2(R; I)/E

⊳

2 (I) is the range of a cer-
tain Mennicke symbol. This section contains the definition of as well
as some lemmas for Mennicke symbols.

Definition III.5 ([Mor07, Def. 2.16 and Lem. 2.19]). Let R be a
commutative ring and I be an ideal in R. A Mennicke symbol is a
function [ ] : WI → A; (a, b) 7→

[
b
a

]
, where A is an abelian group, that

satisfies the following conditions:[
b+ ta
a

]
=

[
b
a

]
, if (a, b) ∈ WI , t ∈ I; (M1)

[
b

a+ sb

]
=

[
b
a

]
, if (a, b) ∈ WI , s ∈ R; (M2)

[
b1
a

] [
b2
a

]
=

[
b1b2
a

]
, if (a, b1) , (a, b2) ∈ WI . (M3)

If the ideal I is principal, add a fourth condition:[
b
a1

] [
b
a2

]
=

[
b

a1a2

]
, if (a1, b), (a2, b) ∈ WI (M4)

Remark III.6. The last condition (M4) can be deduced from the other
properties, given the ideal is principal. It is added to the definition here
to simplify the proofs later on. Conversely, it can be proved that (M4)
always implies (M3). Furthermore, if (M4) holds whenever

[
b
a2

]
= 1

then (M3) holds as well (see Corollary 2.24 in [Mor07]).
Likewise, the condition of the group A being abelian is superfluous

as the image of a Mennicke symbol is automatically abelian.

As mentioned before, an important fact about Mennicke symbols is
that there is a universal Mennicke symbol.

Lemma III.7. There is a universal Mennicke symbol, i.e. an abelian
group AI , called the universal Mennicke group, and a Mennicke symbol
[ ]I : WI → AI , such that for any Mennicke symbol [ ] : WI → A there
exists a unique homomorphism ϕ : AI → A, that makes the following
diagram commutative:

WI

[ ]I
//

[ ]
''N

N

N

N

N

N

N

N

N

N

N

N

N

N

AI

ϕ

��

A

The universal Mennicke symbol and the universal Mennicke group are
unique up to isomorphism.

Proof. Define AI to be the abelian group with generators WI and
relations given by the conditions of definition III.5. Let [ ]I : WI → AI
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be the map that assigns an element to the generator it represents.
This defines a universal Mennicke symbol. The uniqueness up to iso-
morphism follows easily from the uniqueness of the map ϕ. �

For every ideal I in R there is a universal Mennicke symbol. Univer-
sal Mennicke symbols of two different ideals can be put in relation with
each other, if one of the ideals is contained in the other. The condition
I ′ ⊂ I implies WI′ ⊂ WI and the restriction of a Mennicke symbol
[ ] : WI → A of the ideal I induces a Mennicke symbol [ ] : WI′ → A
of the ideal I ′. If the universal Mennicke symbol [ ]I : WI → AI is re-
stricted to WI′ , we therefore get a canonical homomorphism AI′ → AI
by using the universal property of [ ]I . Importantly, this homomor-
phism is surjective, as proved in the following lemma.

Lemma III.8 ([Bas68, VI. Prop. 1.4]). The canonical homomorphism
AI′ → AI is surjective.

Proof. For the proof of this statement, it is necessary to show
that for any (a, b) ∈ WI there is some (a′, b′) ∈ WI′ , such that

[
b
a

]
=

[
b′

a′

]
.

For this, consider the ring R̃ = R/I ′ with the ideal I/I ′ and denote

by â, b̂ ∈ R̃ the elements that are represented by a, b ∈ R. Then R̃ is
a semi-local ring, in which an element t ∈ R̃ can be found, such that
u = â+ tb̂ is a unit (see [Bas68, III. Prop. 2.8]). Now compute:

[
b̂
â

]
=

[
b̂

â+ tb̂

]
=

[
b̂+ u(u−1(1− u− b̂))

u

]
(2.1)

=

[
1− u
u

]
=

[
1− u
1

]
=

[
0
1

]

Observe that the second equation requires (1−u−b̂) ∈ I/I ′. This is true

under condition (â, b̂) ∈ WI/I′ , which implies (â, b̂) ≡ (1, 0) mod I/I ′

and therefore

b̂ ∈ I/I ′ and (1− u) = (1− â) + tb̂ ∈ I/I ′.

Equation (2.1) proves the desired statement. �

The canonical homomorphism allows the deduction of properties of
a Mennicke symbol by analyzing smaller ideals, which may be easier to
handle.

Two additional properties of Mennicke symbols will be required for
the computations. They are proved in the following lemma.

Lemma III.9 ([Mor07, Lem. 2.25]). Let
[ ]

: WI → A be a Mennicke
symbol.
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(1) If

(
a b
c d

)
∈ SL2(R; I), then

[
c
a

]
=

[
b
a

]−1

. (2.2)

(2) Assume that the ideal I is principal and
(
a b
c d

)
∈ SL2(R; I) and f1+ g

(
a b
c d

)
∈ SL2(R; I),

then
[

bg
f + bg

]2
=

[
b

f + bg

]2
. (2.3)

Proof. (1) Since b, c ∈ I and a ≡ 1 mod I, (bc+d(1−a)) ∈ I
and [

b
a

] [
c
a

]
=

[
bc
a

]
=

[
bc− a(bc+ d(1− a))

a

]

=

[
(bc− ad)(1− a)

a

]
=

[
a− 1
a

]
= 1.

(2) a ≡ d ≡ f + ga ≡ 1 mod I, therefore

1 = (f + ga)2 mod qR and (2.4)

1 = det

(
f1+ g

(
a b
c d

))

= f 2 + fg(a+ d) + g2(ad− cb) = f 2 + fg(a+ d) + g2

≡ f 2 + fg(1 + 1) + g2 ≡ (f + ga)2 mod gqR. (2.5)

The following computation proves the desired statement:
[

bg
f + ga

]2
=

[
bg

(f + ga)2

] [
q
1

]
(2.4)
=

[
b

(f + ga)2

] [
g

(f + ga)2

] [
q

(f + ga)2

]

=

[
b

f + ga

]2 [
gq

(f + ga)2

]
(2.5)
=

[
b

f + ga

]2 [
gq
1

]

=

[
b

f + ga

]2

�

3. Properties of number rings

In this section we will define some ring theoretic properties that are
required in the proofs in the later sections. Some of these properties
may on first sight seem a bit arbitrary and in fact we do not give a
better motivation for them other than that they are exactly what is
required to make the proofs possible.



24 III. BOUNDED GENERATION OF SL2(R)

As we eventually want to apply the compactness theorem of first
order logic it is important that all these properties can be expressed as
a collection of first order formulas. This is however not very hard to
verify and we will omit explicit proofs here.

3.1. Stable Range Condition. The first property to be defined
is the stable range condition.

Definition III.10 ([Mor07, Def. 2.9]). A commutative ring R sat-
isfies the stable range condition SRm for some 0 < m ∈ N, if the
following holds: For any elements ai ∈ R, 0 ≤ i ≤ r, such that r ≥ m
and

∑r
i=0 aiR = R, there are a′i ∈ R, such that:

(1) a′i ≡ aimod a0R, for 1 ≤ i ≤ r,
(2)

∑r
i=1 a

′
iR = R

If R/I satisfies SR1 for every non-zero ideal I ⊂ R, the ring R is
said to satisfy SR1 1

2

.

The following lemma describes rings that satisfy the stable range
condition SR1 1

2

.

Lemma III.11. If R has the stable range condition SR1 1

2

, and a, b, c ∈
R, a 6= 0 satisfy aR + bR + cR = R, then there exists b′ ≡ b mod cR,
such that aR + b′R = R.

Proof. The proof is a simple application of SR1 for the quotient
R′ = R/aR. By assumption bR′ + cR′ = R′, so by SR1 1

2

there is a

b̃ ≡ c mod cR′, such that b̃R′ = R′. This implies aR + b′R = R for
some element b′ ∈ R in the coset represented by b̃. �

3.2. Few Generator Property. The few generator property is
used to limit the number of generators of the universal Mennicke group.

Let R× be the group of units (with multiplication as group opera-
tion) of the ring R.

Definition III.12 ([Mor07, Def. 3.2]). A commutative ring R has
the few generator property Gen(t, r) for some t, r ∈ N, if the following
holds: For any a, b ∈ R that satisfy aR + bR = R, there is a principal
ideal I = hR for h ∈ a+ bR, such that the quotient (R/I)×/((R/I)×)t

has r generators.

3.3. Exponent Property. The exponent property will be required
to bound the order of the elements of the universal Mennicke group.
Together with the few generator property this will bound to number of
elements in the universal Mennicke group.

Definition III.13 ([Mor07, Def. 3.6]). A commutative ring R has
the exponent property Exp(t, l) for some t, l ∈ N, l > 0, if the following
holds: For any principal ideal I = qR, 0 6= q and (a, b) ∈ WI , there are
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a′, c, d ∈ R and fi, gi, b
′
i, d

′
i ∈ R and units ui ∈ R, where 1 ≤ i ≤ l, such

that:

a′ ≡ a mod bR; (E1)

fi + gia
′ ≡ ui mod b′iR for 1 ≤ i ≤ l; (E2)

(
a′ b
c d

)
∈ SL2(R; I), (E3)

(
a′ b′i
c d′i

)
, fi1+ gi

(
a′ b′i
c d′i

)
∈ SL2(R; I) for 1 ≤ i ≤ l; (E4)

l∏

i=1

(fi + gia
′)2 ≡ (a′)t mod cR. (E5)

Remark III.14. Note that the fourth property (E4) meets what is
required to apply the property of Mennicke symbols proved in Lemma
III.9.

3.4. Unit Property. The next two properties are necessary to
prove the existence of a Mennicke symbol with SL2(R; I)/E

⊳

2 (I) as
target group.

The unit property allows to transform the conjugation by certain
matrices into multiplication with elementary matrices.

Definition III.15 ([Mor07, Def. 4.3]). A commutative ring R has
the unit property Unit(r, x) for some integers r, x ≥ 1, if:

(1) For any principal ideal I = qR, there exists a unit u ∈ R, such
that

u ≡ 1 mod I and u4 6= 1

(2) There is a unit u0 ∈ R, such that u20 6= 1 and for any ideal I
with r generators and anyA ∈ SL2(R; I), there are e1, e2, . . . , ex ∈
e2(I) with:(

u0 0
0 u−1

0

)
A

(
u−1
0 0
0 u0

)
= e1Ae2 . . . ex

Remark III.16. Clearly, it holds
(
u0−1 0
0 u0

)
A

(
u0 0
0 u−1

0

)
= e′1Ae

′
2 . . . e

′
x,

for any A ∈ SL2(R; I) and some e′i ∈ e2(I). To prove this, simply apply

the statement above to the matrix Ã =
(
u0−1 0
0 u0

)
A
(
u0 0

0 u−1

0

)
.

It is also interesting to note, that the first condition is stronger
than what is needed in the proofs later on. The condition u4 6= 1
could be replaced be u2 6= 1. However, we want to keep the definition
of [Mor07], where the stronger statement is required in a proof of a
different theorem.
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3.5. Conjugation Property. The last property is the conjuga-
tion property. As the name suggest, it allows to control the behavior
of elementary matrices under conjugation by the elementary matrix
( 1 1
0 1 ).
For an ideal I in a ring R let MI be the following set:

MI :=

{
y ∈ I

∣∣∣∣1 + yz = u2,
for some z ≡ ±1 mod I

and a unit u ∈ R

}

Definition III.17 ([Mor07, Def. 4.5]). A commutative ring R has
the conjugation property Conj(z) for some z ∈ N, if for all nonzero
q ∈ R there is a q′ ∈ R, such that any x ∈ q′R can be written as a sum

x =
k∑

i=1

yis
−2
i , (3.1)

where k ≤ z, yi ∈MqR and si are units, such that s−2
i ≡ 1 mod qR.

Remark III.18. The definition of the conjugation property introduced
here differs slightly from the one in [Mor07], where

(1) y ∈ MI satisfies the condition 1 + zyu21 = u2 for z and u as
before and an additional unit u1 and

(2) the units si are removed in the equation (3.1).
These changes were introduced to make the proof of Lemma III.26
easier. Note however, that the proof of Theorem 4.6 in [Mor07] can
be altered to show that rings A of the form A = BS−1 still satisfy this
new conjugation property.

4. Finiteness of the Universal Mennicke group

It is now possible to start with the first crucial proof of this chapter.
In this section it will be shown that the universal Mennicke group is
finite if a ring satisfies the ring theoretic properties defined before for
a suitable choice of the parameters.

The universal Mennicke group is abelian and it therefore is sufficient
to bound its number of generators and the order of its elements. First,
a bound for the latter will be established. Note that the additional
requirement of the ideal being principal will be dropped later on.

Lemma III.19 ([Mor07]). Let R be an integral domain, that satisfies
the property Exp(t, l), and let I ⊂ R be a principal ideal.

Then every element of the universal Mennicke group AI has order
t.

Proof. Let
[
b
a

]
I
for (a, b) ∈ WI be an arbitrary element of the

universal Mennicke group AI . The aim is to compute the t-fold power
of

[
b
a

]
I
. For the following computation choose elements

a′, c, d, ui, fi, gi, b
′
i, d

′
i ∈ R
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as in definition III.13, which is possible since R has the exponent prop-
erty Exp(t, l).

[
b
a

]t

I

(E1);(M2)
=

[
b
a′

]t

I

(E3);(2.2)
=

[
c
a′

]−t

I

(M4)
=

[
c
a′−t

]

I

(E5);(M4)
=

l∏

i=1

[
c

fi + gia
′

]−2

I

(2.3)
=

l∏

i=1

[
cgi

fi + gia
′

]−2

I

(E4);(2.2)
=

l∏

i=1

[
b′igi

fi + gia
′

]2

I

(2.3)
=

l∏

i=1

[
b′i

fi + gia
′

]2

I

(E2);(M2)
=

l∏

i=1

[
b′i
ui

]2

I

(M1)
=

l∏

i=1

[
b′i + ui(u

−1
i (1− ui − b)
ui

]2

(M2)
=

l∏

i=1

[
1− ui

1

]2
(M1)
=

l∏

i=1

[
0
1

]2
(M3)
= 1

�

The next lemma establishes a bound to the number of generators
of the universal Mennicke group.

Lemma III.20 ([Mor07]). Let R be an integral domain that satisfies
the properties SR1 1

2

, Exp(t, l) and Gen(t, r). Let I = qR ⊂ R be a

principal ideal.
Then the universal Mennicke group AI is generated by r elements.

Proof. Take arbitrary elements
[
bi
ai

]
I
∈ AI for 1 ≤ i ≤ r+1. The

aim is to prove that these elements satisfy some nontrivial relation. The
first step is to show that the elements ai can be replaced by coprime
elements a′i, i.e. we want to find elements a′i such that

a′i = ai mod biR, (4.1)

a′iR + a′jR = R for any 1 ≤ i < j ≤ r + 1.

This can be done by inductively applying the stable range condition
SR1 1

2

and Lemma III.11. By definition of WI it follows biR+ aiR = R,

hence with ci = a1a2 . . . âi . . . ar+1 we get:

biR + aiR + ciR = R
SR

1 1
2=⇒ ∃a′i = aimod bi : a

′
iR + ciR = R

Applying this for every i ≤ r+1 where aj, j < i is replaced by a′j in the
product ci, proves the existence of elements a′i that satisfy the desired
property. Furthermore, by the condition a′i = 1 mod I, which holds as
(a′i, bi) ∈ WI , the element q is coprime to a′i. This is true for every i.

Consider now the following set of equations:

x ≡ 1 mod I(= qR),

x ≡ bi mod a′iR for 1 ≤ i ≤ r + 1. (4.2)
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Given that all the elements q and a′i are coprime we, the Chinese re-
mainder theorem can be applied to find a solution y ∈ R for these
equations. The conditions a′iR + biR = R imply that y is coprime to
ai for every i. As the first equation above says that y is coprime to q
as well, it follows:

yR + a′1a
′
2 . . . a

′
r+1qR = R.

Now apply the few generator property Gen(t, r) to find an ideal H =
hR ⊂ R, such that

h ≡ y mod a′1a
′
2 . . . a

′
r+1qR and (4.3)

(R/H)×/((R/H)×)t has r generators.

Note that the elements a′i are units in R/H, which is revealed by
combining the conditions yR + a′iR = R and h ≡ y mod a′iR. The
r + 1 elements a′i therefore must satisfy some nontrivial relation in
(R/H)×/((R/H)×)t, i.e. there are ei ∈ N for 1 ≤ i ≤ r+1 and α ∈ R,
with:

r+1∏

i=1

(a′i)
ei ≡ αt modhR

Furthermore, it can be assumed that

α ≡ 1 mod qR, (4.4)

because of h ≡ y ≡ 1 mod qR, meaning that h and q are coprime and
α could be replaced by a solution to the following equations using the
Chinese remainder theorem.

x ≡ α modhR and

x ≡ 1 mod qR.

Now both αt and
∏r+1

i=1 a
′
i are solutions to the equations

x ≡
r+1∏

i=1

a′i modhR andx ≡ 1 mod qR. (4.5)

According to the Chinese remainder theorem, they differ by an element
of the ideal hqR:

r+1∏

i=1

(a′i)
ei ≡ αt modhqR (4.6)

The following two statements will be necessary for the later calculation.
[
q
a′i

]

I

= 1 (4.7)

h ≡ y ≡ bi mod a′iR (4.8)
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The first clearly follows from the condition a′i ≡ 1 mod qR and the
properties of Mennicke symbols. The second statement is simply the
combination of (4.2) and (4.3).

A first computation gives:
[
bi
ai

]

I

(4.1)
=

[
bi
a′i

]

I

(4.7)
=

[
bi
a′i

]

I

[
q
a′i

]

I

=

[
biq
a′i

]

I

(4.8)
=

[
hq
a′i

]

I

(4.9)

It is now possible to compute:

r+1∏

i=1

[
bi
ai

]ei

I

(4.9)
=

r+1∏

i=1

[
hq
a′i

]ei

I

=

[
hq∏r+1

i=1 (a
′
i)
ei

]

I

(4.6)
=

[
hq
αt

]

I

=

[
hq
α

]t

I

= 1

The last equation follows from Lemma III.19. The computation shows
that the elements satisfy some non-trivial relation. Therefore, the rank
of the universal Mennicke group is less or equal to r. �

Combining the last two lemma we finally get:

Theorem III.21 ([Mor07, Thm. 3.11]; [CKP92]). Let R be an inte-
gral domain that satisfies the properties SR1 1

2

, Gen(t, r) and Exp(t, l)

for some natural numbers t, r, l and let I ⊂ R be an ideal.
The universal Mennicke group AI is finite. More precisely:

|AI | ≤ tr

Proof. First assume that the ideal is a principal ideal. Then the
universal Mennicke group is by III.20 a finitely generated abelian group.
This means it is a direct product AI =

⊕
Ci of cyclic groups Ci.

Lemma III.19 implies that each of these cyclic groups is finite, thus AI
is finite.

If I is not principal, the conclusion follows from Lemma III.8. With
some non-trivial element q ∈ I, the natural homomorphism AqR → AI
will be surjective. This means that AI is a quotient of a finite group,
hence it is finite itself. �

5. A Mennicke symbol for SL2(R)

At the very beginning of this section we will introduce some addi-
tional notation. Define:

eu :=

(
1 1
0 1

)
, el :=

(
1 0
1 1

)
and

P :=

(
0 1
0 1

)
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For elements a, b denote by D(a, b) the matrix:

D(a, b) :=

(
a 0
0 b

)

If v is a unit this will be abbreviated to D(v) := D(v, v−1). Further-
more, we will use the common notation ab := b−1ab for conjugated
elements.

In addition, the following definitions are required for the next sec-
tions.

Definition III.22. Throughout this section
(1) R will denote an integral domain that satisfies SR1 1

2

, Gen(2, 1),

Unit(1, x) and Conj(z) for positive integers x and z,
(2) I will be an ideal of R, and
(3) K is the localization of R at R (see III.31), i.e. K is a field

that contains R as a subring.

Next, a connection between Mennicke symbols and bounded gener-
ation will be established by proving the following theorem:

Theorem III.23 ([Mor07]). Let N be a normal subgroup of SL2(R; I)
that satisfies

E⊳

2 (I) ⊂ N and (5.1)

( −1 0
0 1 )N ( −1 0

0 1 ) = N . (5.2)

The map [ ] : WI → SL2(R; I)/N , defined by
[
b
a

]
:=

(
a b
∗ ∗

)
N

is a well-defined Mennicke symbol.

Remark III.24. Note that the condition of (5.2) is not a strong re-
striction on N . It can be forced by replacing the subgroup N by
N ∩ ( −1 0

0 1 )N ( −1 0
0 1 ). Because conjugation by the matrix ( −1 0

0 1 ) fixes
SL2(R; I) and E⊳

2 (I), the replacement group now satisfies the condition
(5.2).

The following section treats the proof of Theorem III.23. The most
difficult part of the proof is to show that the map

[ ]
defined above

satisfies the property (M4). The proof will be divided into two parts,
first treating the other properties that are easier to verify.

Proof of Theorem III.23, Part 1. First we are going to prove
that the map is well defined and satisfies the properties (M1) and (M2).
If (a, b) ∈ WI , then by remark III.3 there are c, d ∈ R, such that ( a bc d ) ∈
SL2(R; I). Assume there is a second pair c′, d′ ∈ R with

(
a b
c′ d′

)
∈
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SL2(R; I). Thus
(
a b
c d

)(
a b
c′ d′

)−1

=

(
1 0
x 1

)
for some x ∈ I (5.3)

By the condition E⊳

2 (I) ⊂ N , the two possible images of (a, b) ∈ WI

represent the same element in A and the map [ ] is well-defined.
The properties (M1) and (M2) follow from simple computations:
(1) M1 : For t ∈ I take the matrix eu(t) = ( 1 t

0 1 ) ∈ E2(I) and
compute:

(
a b
∗ ∗

)
eu(t) =

(
a b+ ta
∗ ∗

)

This implies
[
b+ta
a

]
=

[
b
a

]
, as E⊳

2 (I) ⊂ N .
(2) M2: Take the matrix el(s) = ( 1 0

s 1 ) for s ∈ R. Thus:
(
a b
∗ ∗

)
[( a b∗ ∗ ) , el(s)] =

(
a b
∗ ∗

)el(s)

=

(
a+ sb b

∗ ∗

)

Hence we have
[

b
a+sb

]
=

[
b
a

]
, as [E2(R), SL2(R; I)] ⊂ N by

lemma III.27 (which will be proved later on).
�

Below the proofs of a variety of lemmas that will be important
later on, especially lemma III.27 and III.29. These will be applied in
the second part of the proof of Theorem III.23.

The following lemma will be cited without a proof. A proof for the
first fact can be found in [Bas64, Thm. 4.2], the second one is proved
in the article by Witte Morris [Mor07].

Lemma III.25 ( [Mor07, Cor. 2.15], [Mor07, Lem. 5.6]). Let S be
a commutative ring and J ′ ⊂ J ideals in S. If S/J ′ satisfies SR1, then

SL2(S; J) = SL2(S; J
′) E⊳

2 (J) (5.4)

If instead J and J ′ are ideals such that J ′ ⊂ J2 then

SL2(S; J
2) ⊂ SL2(S; J

′) E2(J) (5.5)

The next lemma, using the conjugation property, will allow the
specify of the subgroup in which the commutator [e2(R), SL2(R; I)] is
contained.

Lemma III.26. For any A ∈ GL2(K) and any ideal J ⊂ R there is a
nonzero ideal J ′ ⊂ J , such that

A−1E2(J
′)A ⊂ E2(J)

Proof. It is well-established that any matrix in SL2(K) can be
written as a product of eu = ( 1 1

0 1 ), P = ( 0 1
1 0 ) and matrices of the form
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D(a, b) = ( a 0
0 b ) for a, b ∈ K. More explicitly if A = ( a bc d ) ∈ SL2(K)

then a possible decomposition is given by:

A = PD(a−1c, 1)euD(ac
−1d− b, a)PD(a−1b, 1)euD(ab

−1, 1)

In order to prove the lemma it suffices to find ideals Jp, Jeu and JD(a,b),
such that the elementary matrices with entries in one of those ideals
are mapped into E2(J) by the conjugation action of the corresponding
matrix. Because the ideal J was arbitrary, the statement of the lemma
then follows by recursively applying the statements for the specific
elements. The proofs for the different elements will be carried out
elements separately:

(1) P: The conjugation by p maps the elementary matrices el(a)
to eu(a). This implies that e2(J) is invariant under the conju-
gation by p for any ideal J .

(2) D(a, b): For an arbitrary ideal J define the ideal

JD(a,b) = a−1bJ ∩ b−1aJ ∩R.

This ideal satisfies D(a, b)−1E2(JD(a,b))D(a, b) ⊂ E2(J).
(3) eu: We will prove the following statement: There is an ideal

Jeu ⊂ J , such that

e−1
u e2(Jeu)eu ⊂ 〈e2(J)〉33z,

i.e. the eu-conjugates of any elementary matrix in e2(Jeu) is
a product of finitely many elementary matrices in e2(J). Be-
cause the group eu(∗) = {( 1 a

0 1 ) |a ∈ R} is commutative, we
only need to carry out the proof for eu-conjugates of elemen-
tary matrices of the form el(a) = ( 1 0

a 1 ).
First of all, observe the following: For any unit v ∈ R there

is

el(a)
D(v) = el(v

2a) and

eu(a)
D(v) = eu(av

−2).

This leads to:

((el(a)
e−1
u )D(v))eu = el(v

2a)eu(1−v
−2).

If now v is a unit with v2 − 1 ∈ qR obtain:

Aeu ∈ e2(qR) =⇒ (AD(v))eu ∈ 〈e2(qR)〉3 (5.6)

Now fix some q ∈ J and a unit u ∈ R with u2 6= 1 and
u ≡ 1 mod qR (which exists by the unit property). By the
conjugation property, there is a q′, such that any element of the
ideal q′R is a sum of z or less elements of the form ys−2, with
y ∈ MqR and s ≡ 1 mod qR. If we define Jeu := (1− u2)q′R,
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the only thing left to show is that for y ∈ MqR and s ≡
1 mod qR it follows:

el((1− u2)ys−2)eu ∈ 〈e2(J)〉33

So let y be in MqR, i.e. there are z, u1 ∈ R with:

z ≡ 1 mod qR

u21 = 1 + zy

The first condition can be established by changing y to −y, if
necessary. Now define

w := (u2 − 1)u−2
1 ,

M :=

(
1 z − 1
0 1

)(
1 0
y 1

)
∈ 〈e2(qR)〉2

eu(c) := eu(w(1− z + yz)) ∈ e2(qR)

With these definitions it is an elementary computation to show
that

el(−wy) =M e−1
u D(u)−1(eu(c)M

−1)e
−1
u D(u)

Note that (((eu(c)M
−1)e

−1
u )D(u))eu ∈ 〈e2(qR)〉9 by (5.6) and

therefore el(−wy)eu ∈ 〈e2(qR)〉11. The last step of the proof
is now to observe, that u21 = 1+ zy ≡ 1 mod qR. This implies
(su−1

1 )2 ≡ 1 mod qR. Thus

el((1− u2)ys−2) = el(−wy s
2

u2
1

) = el(−wy)D(s/u1)

and by (5.6) deduce

el((1− u2)ys−2) ∈ 〈e2(qR)〉33.

.
This completes the proof. �

The following lemma is central.

Lemma III.27. [E2(R), SL2(R; I)] ⊂ E⊳

2 (I)

Proof. Let u be a unit satisfying the properties of definition III.15
(2). Take T ∈ SL2(R; I) and A = ( 1 a

0 1 ) ∈ E2(R) and define k =
2(u2 − 1) ∈ R and U =

(
u 0
0 u−1

)
. With e =

(
1 ak−1

0 1

)
∈ SL2(K) follows:

A = e−1Ue2U−1e−1
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Regard T and A as elements of SL2(K) and apply Lemma III.26 mul-
tiple times to find ideals J4 ⊂ J3 ⊂ J2 ⊂ J1 ⊂ I, such that

T−1E2(J1)T ⊂ E2(I),

A−1E2(J2)A ⊂ E2(J1),

e−1E2(J3)e ⊂ E2(J2) and

e2E2(J4)e
−2 ⊂ E2(J3).

By restriction to a smaller ideal, we can assume that each of the ideals
Ji is principal. This will be necessary for the application of the unit
property Unit(1, x). Now Lemma III.25 allows to decompose T as

T = XE with X ∈ SL2(R; k
2J4) and E ∈ E⊳

2 (I).

The following facts will be used:

UE2(Ĩ)U
−1 ⊂ E2(Ĩ) for any ideal Ĩ ,

X1 := eXe−1 ∈ SL2(R; J4) and

X2 := e−1Xe ∈ SL2(R; J4).

The unit property allows to substitute some elements ei, e
′
I ∈ e2(J4):

U−1X1U = e1X1e2 . . . ex and

UX2U
−1 = e′1 . . . e

′
x

Now compute the commutator of A and T :

[T ;A] = T−1A−1TA = T−1A−1XA(A−1EA) ∈ T−1A−1 X︸︷︷︸
=e−1UU−1X1UU−1e

A · E⊳

2 (I)

= T−1A−1e−1UU−1 X1︸︷︷︸
∈SL2(J4)

UU−1eA · E⊳

2 (I)

= T−1A−1e−1U e1︸︷︷︸
∈E2(J4)

X1 e2 . . . ex︸ ︷︷ ︸
∈E2(J4)

U−1eA · E⊳

2 (I)

⊂ E2(I) · T−1A−1e−1U X1︸︷︷︸
=e2U−1UX2U−1Ue−2

U−1eA · E⊳

2 (I)

= E2(I) · T−1A−1e−1Ue2U−1U X2︸︷︷︸
∈SL2(R;J4)

U−1Ue−2U−1eA · E⊳

2 (I)

= E2(I) · T−1A−1e−1Ue2U−1 e′1︸︷︷︸
∈E2(J4)

X2 e
′
2 . . . e

′
x︸ ︷︷ ︸

∈E2(J4)

Ue−2U−1eA · E⊳

2 (I)

⊂ E2(I) · T−1A−1e−1Ue2U−1X2Ue
−2U−1eA · E⊳

2 (I)

⊂ E⊳

2 (I)
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A similar proof also gives us this statement for a matrix A′ = ( 1 0
a 1 ).

The case of arbitrary element of E2(R) now easily follows, as any ele-
ment of E2(R) is a finite product of elementary matrices. �

It is possible to modify the proof of Lemma III.27 to obtain a very
similar result, stated in the corollary below. For an elementary matrix
the proof is similar to the one stated above, except that the ideal I is
replaced by an ideal I ′ that satisfies I ′ ⊂ I2 and AE2(I

′)A−1 ⊂ E2(I).
This is possible according to Lemma III.26. Note that the second part
of Lemma III.25 needs to be applied instead of the first one. For general
matrices in SL2(K), the claim follows from the fact that they can be
written as a finite product of elementary matrices (becauseK is a field).

Corollary III.28. For any A ∈ SL2(K), there is an ideal J ′, such that
[A, SL2(R; J

′)] ⊂ E⊳

2 (I).

The second important lemma now is a simple conclusion.

Lemma III.29. For every y ∈ R there is an ideal I ′ ⊂ I such that
[
by2

a

]
=

[
b
a

]
∀(a, b) ∈ WI′

Proof. According to Corollary III.28 there is an ideal I ′ satisfying[(
y 0
0 y−1

)
, SL2(R; I

′)
]
⊂ E⊳

2 (I) . A simple computation yields:

[
by2

a

]
=

(
a by2

∗ ∗

)
N =

(
y 0
0 y−1

)(
a b
∗ ∗

)(
y−1 0
0 y

)
N

=

(
a b
∗ ∗

)[
( a b∗ ∗ ) ,

(
y−1 0
0 y

)]
N =

[
b
a

]

using that E⊳

2 (I
′) ⊂ N . This proves the desired statement. �

Now the proof of this section’s main theorem can be completed.

Proof ofTheorem III.23, Part 2. First assume that the ideal
I is principal: I = qR, for some q ∈ R. Furthermore, by the remark
III.6 it is sufficient to prove

[
bq
a1

] [
bq
a2

]
=

[
bq
a1a2

]
,

whenever
[
bq
a1

]
= 1 or

[
bq
a2

]
= 1. Note that in this case

[
bq
a1

]
and[

bq
a

]
2
will commute with each other and we can assume that

[
bq
a2

]
= 1

without loss of generality.
Following a proof by cases:
(1) a2 ≡ y2 mod bqR, for some y ∈ R.
(2) a1 ≡ y2 mod bqR, for some y ∈ R.
(3) a1a2 ≡ y2 mod bqR, for some y ∈ R.
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To prove the first case, take a′2 := y2 ≡ a2 mod bqR. By Lemma III.29
there is an ideal I ′ ⊂ I, such that

[
xa′2
z

]
=

[
x
z

]
(5.7)

for any (x, z) ∈ WI′ . Furthermore, as (bq, a1a
′
2) ∈ WI , we have

bR + a1a
′
2R ⊃ bqR + a1a2R = R/I ′.

The property SR1 1

2

(or more precisely SR1 for R/I
′) ensures that there

is an element b′ ≡ b mod a1a
′
2R with b′R + I ′ = R. This implies the

existence of an element t ∈ R, such that

tb′ = 1 mod I ′. (5.8)

Define a′1 := a1 − (1 − a1)tb
′. This element satisfies a′1 ≡ a1 mod b′I

and a′1 ≡ 1 mod I ′ by (5.8). Note that this implies (a′1 − 1) ∈ I ′. Let
c, d be such that

(
a′
2
b′q

c d

)
∈ SL2(R; I). Therefore

a2d = 1 + cb ≡ 1 mod b (5.9)

Using the properties of Mennicke symbols, now compute:
[
bq
a1a2

] [
bq
a2

]−1

=

[
bq
a1a

′
2

] [
bq
a′2

]−1

=

[
b′q
a1a

′
2

] [
b′q
a′2

]−1

(5.10)

=

[
b′q
a′1a

′
2

] [
b′q
a′2

]−1

=

(
a1a2 bq
∗ ∗

)(
a2 bq
c d

)−1

=

(
a1a2 bq
∗ ∗

)(
d −bq
−c a2

)

=

(
a1a2d− bqc −a1a2bq + bqa2

∗ ∗

)

=

(
1− a2d(1− a1) a2bq(1− a2)

∗ ∗

)

=

[
a′2b

′q(1− a′1)
1− a′2d(1− a′1)

]
(5.7)
=

[
b′q(1− a′1)

1− a′2d(1− a′1)

]

(5.9)
=

[
b′q(1− a′1)

a′1

]
=

[
b′q
a′1

]
=

[
bq
a1

]

This proves the statement in the first case.
The proof for the second case is immediately obtained from the first

case, due to the commutativity of
[
bq
a1

]
and

[
bq
a2

]
.

Now assume a1a2 = y2 mod bqR for some y ∈ R. Under the condi-
tion (5.2) it follows :

[
bq
a2

]
= 1 = ( −1 0

0 1 )1 (
−1 0
0 1 ) = ( −1 0

0 1 )

[
bq
a2

]
( −1 0

0 1 ) =

[
−bq
a2

]
(5.11)
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Take again c, d ∈ R satisfying
(
a2 −bq
c d

)
∈ SL2(R; I). From the fact that(

a2 −bq
c d

)−1
=

(
d bq
−c a2

)
compute:
[
bq
a2

]−1
(5.11)
=

[
−bq
a2

]−1

=

[
bq
d

]
(5.12)

Now use the result from the first case to compute:
[
bq
a1a2

] [
bq
a2

]−1
(5.12)
=

[
bq
a1a2

] [
bq
d

]
=

[
bq

a1a2d

]
=

[
bq
a1

]

The last equality makes use of 1 = a2d− bqc ≡ a2d mod bqR.
It still has to be proved that at least one of the three cases occurs for

any choice of the elements a1 and a2. This is where the few generator
property Gen(2, 1) will be used.

Because of (bq, a1a2) ∈ WI , it follows

bR + a1a2R ⊃ bqR + a1a2R = R

and by SR1 1

2

find b̃ ∈ R with

b̃ = b mod a1a2R and

b̃R + qR = R. (5.13)

It remains (a1a2, b̃q) ∈ WI and

a1a2R + b̃R = R. (5.14)

(5.13) and (5.14) together give:

b̃R + a1a2qR = R (5.15)

It is now possible to apply the few generator property. Hence, there is
an element b′ ∈ R, such that

b′ ≡ b̃ mod qa1a2R and

(R/b′R)×/((R/b′R)×)2 is cyclic.

Because b̃ was only changed by an element of the ideal qR, it remains
b′R + qR = R, i.e. b′ and q are coprime. Furthermore (a1a2, b

′q) ∈ WI

and a1a2R+b′qR = R, implying that a1a2 is a unit in R/b
′R. The same

holds for the elements a1 and a2. So they can be considered as elements
of (R/b′R)×/((R/b′R)×)2. Because this group is cyclic and has order 2,
at least one of the elements a1, a2, a1a2 has to be trivial in this group.
In other words, there is at least one element that is a square modulo
b′R. Without loss of generality it can be assumed a1 ≡ y2 mod b′R.
Remember that (a1, bq) ∈ WI implies a1 ≡ 1 mod qR.

b′ and q are coprime, so according to the Chinese remainder theorem
R/b′qR is isomorphic to R/b′R×R/qR. This means that

y′ = (y, 1) ∈ R/b′R×R/qR ∼= R/bqR



38 III. BOUNDED GENERATION OF SL2(R)

is an element that satisfies y′2 ≡ a1 mod bqR. This finishes the proof
in the case of a principal ideal.

It remains to prove that the assumption of the ideal being principal
is not a restriction. So let I be arbitrary and take (a1, b), (a2, b) ∈ WI .
As above c, d ∈ R are such that

(
a2 −bq
c d

)
∈ SL2(R; I).

[
b

a1a2

] [
b
a2

]−1

=

[
a2(1− a1)

1− a2d(1− a1)

] [
1− a1

1− a2d(1− a1)

]

︸ ︷︷ ︸
=1

=

[
a2b(1− a1)

2

1− a2d(1− a1)

]
(5.16)

=

[
a2(1− a1)

1− a2d(1− a1)

]

︸ ︷︷ ︸
=1

[
b(1− a1)

1− a2d(1− a1)

]
(5.17)

=

[
b(1− a1)

a1 − bc(1− a1)

]
=

[
b
a1

]

The first equation follows from a computation that was part of equation
5.10. In the steps (5.16) and (5.17) we used that the restriction of

[ ]

to the principal ideal (1− a1)R ⊂ I is a Mennicke symbol.
This completes the last step of the proof. �

6. Number rings

Up until now, the existence of rings satisfying the ring theoretic
properties of Section 3 is not described. However, there are concrete
examples of such rings, which will be shortly presented in this section.
For simplicity, we will not verify the desired properties in detail, but
instead refer to the article [Mor07], where all the proofs can be found.

The following definitions will be necessary.

Definition III.30. Let K be an algebraic extension of Q. An order
in K is a subring O with the following properties:

(1) QO = K
(2) O is a lattice in K

Example. The set OK of algebraic integers in K is an order in K.
Recall that OK is the set of all elements a ∈ K, which are a root of
some monic polynomial f with coefficients in Z.

Definition III.31. Let R be a ring and S a multiplicative subset. The
localization of R at S is a ring denoted by S−1R together with a map
f : R → S−1R, such that the following universal property holds: If R′

is any ring and there is a map f ′ : R → R′, such that every element of
S is mapped to a unit, then there is a unique map g : R → R′, making
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the following diagram commutative:

R
f

//

f ′
&&N

N

N

N

N

N

N

N

N

N

N

N

N
R

g

��

R′

Remark III.32. If the ring R has no zero divisors then the localization
at a subset S that does not contain 0 is easily constructed as the ring
of fractions: S−1R = { r

s
|r ∈ R, s ∈ S}.

Now let K be an algebraic number field of degree k < ∞ over Q.
Take an order B in K and a multiplicative subset S ⊂ B. Define the
ring A to be the localization A = S−1B of B at S.

Theorem III.33 ([Mor07]). Let A be a ring as above and assume
that A has infinitely many units. Then A satisfies the properties SR1 1

2

,

Gen(2, 1), Gen(t, r), Exp(t, l), Unit(1, x) and Conj(z) for positive in-
tegers r, x, l, t and z.

In the following, only rings of the form A = S−1B will be consid-
ered.

7. Bounded Generation in SL2(A)

In this section we will finally prove the main theorem of this chapter.
We will start by recalling the compactness theorem of first order logic.

7.1. The Compactness Theorem of first order logic. For the
formulation of the compactness theorem the following definitions are
required.

Definition III.34. A first-order language L consists of the following
data:

The alphabet of L, which is the disjoint union of the following sets:
(1) V , the set of variables,
(2) a set of logical symbols,
(3) {=}, the equal symbol,
(4) {(, )}, a set of parentheses,
(5) and the symbol set S, containing

(a) a set Rn of n-ary relation symbols for every n ∈ N,
(b) a set Fn of n-ary function symbols for every n ∈ N,
(c) a set C of constant symbols.

The terms of L is the set that contains:
(1) any v ∈ V ,
(2) any constant symbol c ∈ C,
(3) any f(x1, . . . , xn), for a n-ary function f ∈ Fn and terms

x1, . . . , xn.
Formulas of L are:
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(1) (x1 = x2), if x1 and x2 are terms of the language,
(2) (R(x1, . . . , xn)), for a n-ary relation R and terms xi,
(3) (¬ϕ), for a formula ϕ,
(4) (ϕ ∨ ψ), for formulas ϕ and ψ,
(5) (∃xϕ(x)), for a formula ϕ and a variable x.

Example (The language of rings). The language of rings has the bi-
nary function symbols +,−,×, representing the binary operations, and
two constant symbols 0, 1, representing zero and the identity of a ring.

To be able to assign a meaning to the formulas of a language L we
need the notion of an interpretation, given in the next definition.

Definition III.35. An interpretation of a first order language is a
tuple (D, I), where D is a non-empty set and I is a function that
assigns

(1) an element of D to every constant symbol,
(2) a n-ary function Dn → D to every function symbol and
(3) a n-ary relation (i.e. a subset of Dn) to every n-ary relation

symbol.
It can be shown that this allows the assignment of a truth value (i.e.
the value true or false) to any formula of the language. A formula is
said to be satisfied in the interpretation, if its assigned value is true.

Definition III.36. If a formula ϕ is satisfied in an interpretation I,
we say that I is a model for ϕ and write I |= ϕ. The same applies if
Φ is a set of formulas: I |= Φ ⇔ I |= ϕ ∀ϕ ∈ Φ

Φ is said to imply ψ, if every model for Φ is also a model for ψ.
This is denoted by Φ |= ψ.

Now all the requirements for the formulation of the compactness
theorem are fulfilled.

Theorem III.37 (The Compactness Theorem of first-order logic). Let
Φ be a set of first-order formulas. Then Φ has a model if and only if
every finite subset Φ0 ⊂ Φ has a model.

For a proof of the compactness theorem we just refer to the intro-
ductory text [EFT07], as a full proof would go beyond the scope of
this thesis. We conclude this subsection with the following remark.

Remark III.38. The name of the compactness theorem has the fol-
lowing origin: For any set of first-order formulas Φ, which has a model,
choose a model MΦ. Let X = {MΦ|Φ has a model} be the set of all
such models and set Xϕ = {M ∈ X|M |= ϕ} for any formula ϕ.

Then the collection of all Xϕ defines a basis for a topology on X.
The statement of the compactness-theorem is precisely that X, en-
dowed with this topology, is a compact space.
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7.2. Bounded Generation in SL2(A). The theorem of bounded
generation in the group SL2(A) stated later on is a consequence of the
following more general theorem.

Theorem III.39 ([Mor07, Cor. 2.8]). Let L be a first-order language
containing:

(1) the language of rings (+,−,×, 0, 1);
(2) variables xij, 1 ≤ i, j ≤ n;
(3) two relation symbols G(xij) and H(xij);
(4) constant symbols Ck, k ∈ N;
(5) additional variables, constant symbols and relation symbols.

Let T be a collection of first-order expressions, such that every model
(D, I) of T has the following properties:

(1) D is a commutative ring, and
(2) with the definitions

GD = {(xij)|xij ∈ D,G(xij)}, and

ED = {(xij)|xij ∈ D,H(xij)},

GD is a subgroup of SLn(D) and ED generates a finite-index
subgroup in GD.

Then for any model (D, I) the set ED boundedly generates the subgroup
〈ED〉 of GD.

Proof. To the set T add for every i, j, r ∈ N, j 6= i, expressions
that specify

Ci ∈ GD,

C−1
i Cj /∈ 〈ED〉r.

This extension of T is not consistent: The condition C−1
i Cj /∈ 〈ED〉 for

any r ∈ N implies that C−1
i Cj is not in the set 〈ED〉. Therefore, the

subgroup 〈ED〉 has infinitely many cosets in G, in contradiction to the
assumption that this subgroup is of finite index.

Application of the compactness Theorem III.37 therefore yields an
inconsistent finite subset of these expressions. This means that there
is a number r ∈ N, such that for any C1, C2, . . . Cr ∈ GD there are
i, j ∈ N with i 6= j and C−1

i Cj ∈ 〈ED〉r−1.
Now assume the existence of elements Ci ∈ GD i ≤ r that are a

product of exactly i · r elements of ED, i.e.:

Ci ∈ 〈ED〉ir \ 〈ED〉ir−1

This implies, that the word length of the Ci differ by at least r and
hence:

C−1
i Cj /∈ 〈ED〉r−1
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By the statement above, it is impossible to find elements with this
property and therefore there is a k ≤ r such that

〈ED〉kr = 〈ED〉kr−1

This implies 〈ED〉kr = 〈ED〉 and the subgroup is boundedly generated.
�

We now would like to apply Theorem III.39 to the situation where
GD = SL2(A; I) and ED = E⊳

2 (I). Therefore, the only thing left to
prove is that the elementary matrices generate a finite index subgroup
in SL2(A; I). This of course requires the ring R be of a special type.

In the following, denote by A = S−1B a ring like in Section 6, i.e.
A is a ring that satisfies:

(1) SR1 1

2

,

(2) Gen(2, 1) and Gen(t, r) for some t, r ∈ N>0,
(3) Exp(t, l) for t, l ∈ N>0,
(4) Unit(1, x) for x ∈ N>0 and
(5) Conj(z) for z ∈ N>0.
The proof of the next lemma is now easily obtained by just com-

bining all the results from above.

Lemma III.40 ([Mor07, Thm. 5.13];[CKP92]). Let A be a ring as
above and let I ⊂ A be an arbitrary ideal. Then E⊳

2 (I) is of finite index
in SL2(A; I).

Proof. The lemma can be proved using the results on Mennicke
symbols from the foregoing sections. Theorem III.23 states that the
quotient SL2(A; I)/E

⊳

2 (I) is the image of a Mennicke symbol. Hence,
by the universal property (III.7) it is a quotient of the universal Men-
nicke group. The finiteness of the universal Mennicke group, proved in
Theorem III.21, thus implies the finiteness of SL2(A; I)/E

⊳

2 (I). �

Finally, the chapter can be concluded with the central result.

Theorem III.41 ([Mor07, Thm.5.26];[CKP92]). Let A be a ring as
above. Then E⊳

2 (I) is boundedly generated by e⊳2 (I) for any ideal I in
A.

Proof. In the notation of Theorem III.39 add to the language T
formulas to ensure the following conditions for any model (D, I):

(1) the ring D satisfies the properties SR1 1

2

, Gen(2, 1), Gen(t, r),

Exp(t, l), Unit(1, x) and Conj(z).
(2) GD = SL2(D; J) and ED = e⊳2 (J) for some ideal J ⊂ D.

Application of Theorem III.39, which is now possible by Lemma III.40
completes the proof. �



IV

Ulam Stability of SL2(A)

Throughout this section A will denote a ring as in in section 6.
Thus A is of the form A = BS−1, with B being an order in the ring
of algebraic integers in an algebraic number field K and S ⊂ B a
multiplicative subset. It will be assumed that A has an infinite number
of units. As stated above, a ring A has the property that the elementary
matrices e⊳2 (I) boundedly generate the group E⊳

2 (I) in SL2(R) for any
ideal I ⊂ R.

1. Preliminaries

The proofs of the following well known lemmas are required for
proving Ulam stability of SL2(A). The first two lemmas concern prop-
erties of the ring A and will be used in the proofs of Lemma IV.6 and
the main theorem (Theorem IV.7).

Lemma IV.1. The ring A has a unit of infinite order.

Proof. As the ring A has an infinite number of units, Dirichlet’s
unit theorem implies the existence of a unit that is not a root of unity.
This already completes the proof. �

The second important property of A is proved in the next lemma.

Lemma IV.2. Let I be an arbitrary ideal in A. Then E⊳

2 (I) is of finite
index in SL2(A).

Proof. As A is the localization of a number ring, any ideal I of
A has finite index: |A/I| < ∞. This implies that the congruence
subgroup SL2(A; I) is of finite index in SL2(A), i.e.

|SL2(A)/SL2(A; I)| = |SL2(A/I)| <∞.

The conclusion of the lemma now follows from Lemma III.40:
∣∣∣∣∣
SL2(A)

E⊳

2 (I)

∣∣∣∣∣ ≤ |SL2(A/I)| ·
∣∣∣∣∣
SL2(A; I)

E⊳

2 (I)

∣∣∣∣∣ <∞

�

Further, the character of a representation will be defined followed
by the proof of a lemma for characters, which will be used in the sequel.

43
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Definition IV.3. Let π be a finite-dimensional representation of a
group G. The character χ of π is defined as:

χ(g) = tr(π(g))

If the representation is of dimension d, the character is also said to be
d-dimensional.

The next lemma treats an important property of characters imply-
ing that a character is essentially unique.

Lemma IV.4. One-dimensional characters of a group G are linearly
independent in the space of functions of G.

Proof. The objective is to show that if Φi, i = 1, . . . n, are n dif-
ferent characters, then one has:

n∑

i=1

aiΦi = 0 ⇔ ai = 0 ∀i = 1, . . . n (1.1)

This is done by induction on the number of summands. The claim
holds for one summand, therefore, in order to do a proof by contradic-
tion, assume that 1.1 holds for all k ≤ n and that there is a relation∑n+1

i=1 aiΦi = 0, such that the Φi are pairwise different and not all of
the ai are zero. Observe that according to the inductive assumption
ai 6= 0 for every i ≤ n+ 1.

Take a g ∈ G with the property Φ1(g) 6= Φ2(g), which exists be-
cause Φ1 6= Φ2. Since one-dimensional characters are multiplicative the
relation

∑n+1
i=1 aiΦi = 0 can be transformed into a new relation:

n+1∑

i=1

aiΦi(g)Φi(h) =
n+1∑

i=1

aiΦi(gh) = 0 ∀h ∈ G (1.2)

These two relations together now give:

n+1∑

i=1

(Φi(g)− Φ1(g))aiΦi =
n+1∑

i=2

(Φi(g)− Φ1(g))aiΦi = 0 (1.3)

But this is now a non-trivial relation ((Φ1(g) − Φ2(g))a2 6= 0) with n
summands in contradiction to the inductive assumption. �

2. Johnson’s Theorem

In this section an important theorem by Johnson will be presented.
The theorem will be used to prove Ulam stability of SL2(A), but it
is also interesting in that it implies that the representation close to a
ε-representation is unique if the group is amenable.

Theorem IV.5 ([Joh86]). If Γ is an amenable group, then every two
unitary representations π, µ : Γ → U(n) with ‖π−µ‖ < 1 are unitarily
conjugate.
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Proof. Let π and µ be such representations. Denote by
∫
Γ
dg the

mean of the amenable group Γ. Define the following element a ∈ U(n)

a =

∫

Γ

π(g)µ(g−1)dg (2.1)

Then a satisfies πa = aµ:

π(g)a =

∫

Γ

π(gh)µ(h−1)dh =

∫

Γ

π(ĥ)µ(ĥ−1g)dĥ = aµ(g) (2.2)

Furthermore a is non-zero and invertible, since:

‖a− 1‖ ≤
∫

Γ

‖π(g)µ(g−1)− 1‖dg =
∫

Γ

‖π(g)− µ(g)‖dg < 1 (2.3)

Therefore the unitary part u of the polar decomposition a = u|a| is
a unitary that conjugates the representations. This finishes the proof.

�

3. Ulam stability of SL2(A)

Now we have all the ingredients that are required to proof the Ulam
stability of SL2(A). The first step of the proof is to show that if π is
a representation of A that satisfies a certain condition then there is an
ideal I on which π is trivial. This will allow us to conclude that the
elementary matrices E⊳

2 (I) with entries in this ideal act almost trivial.
The precise statement is the following:

Lemma IV.6. Let a ∈ A be a unit of infinite order. Let π : A→ U(n)
be finite dimensional representation whose character is invariant under
multiplication with a. Then there exists some 0 6= q ∈ A such that π|qA
is the trivial representation.

Proof. As A is abelian, every irreducible representation is one-di-
mensional. This implies that the character Φ = tr(π) of a d-dimensional
representation is a sum of d one-dimensional characters

Φ =
d∑

i=1

Φi for Φi : A→ U(1) 1 ≤ i ≤ d.

These characters Φi are unique up to permutation as this follows from
Lemma IV.4.

By invariance of the character, multiplication by a therefore only
permutes the summands Φi of the character Φ. As the permutation
group of a finite set is finite, there exists a power an of a which leaves
every single summand invariant:

Φi(a
nb) = Φi(b) ∀b ∈ A

Dividing by the right hand-side gives:

Φi((a
n − 1)b) = 1 ∀b ∈ A

With setting q = an − 1 6= 0, the proof is completed. �
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This allows proving the following theorem.

Theorem IV.7. SL2(A) is Ulam stable.

Proof. Let µ : SL2(A) → U(n) be a ε-:representation into a
Hilbert space with finite dimension n. Denote by A′ the copy of A in
SL2(A) consisting of the upper triangular matrices with ones on the di-
agonal, i.e. in the notation of the previous chapter A′ = {eu(a)|a ∈ A}.
As A is an abelian group it is amenable and the restriction of µ to A′

is 2ε-close to a representation π : A′ → U(n) (Theorem II.5):

‖π − µ|A′
‖ ≤ 2ε

Now let u ∈ A be a unit with infinite order (which exists by Lemma
IV.1). Define U :=

(
u−1 0
0 u

)
. Note that conjugation of A′ by U descends

into multiplication by u2:

U−1a′U =

(
u 0
0 u−1

)(
1 a
0 1

)(
u−1 0
0 u

)
=

(
1 u2a
0 1

)
= (u2a)′

Denote by πu : A′ → U(n) the representation that is obtained by
conjugating the argument of π with U : πu(a′) = π(U−1a′U). The
following computation holds:

πu(a) = π(U−1aU) ∼2ε µ(U
−1aU) ∼2ε µ(U

−1)µ(a)µ(U)

∼2ε µ(U
−1)π(a)µ(U) ∼ε µ(U)

−1π(a)µ(U) (3.1)

This means that the representation πu is 7ε-close to a representation
conjugate to π. Applying Johnson’s Theorem IV.5, which is possible as
A is amenable, yields that the two representations π and πu are conju-
gate (if ε ≤ 1

7
). Characters of conjugate representations are equal, thus

we can deduce that the character of µ is invariant under multiplication
with u2.

By Lemma IV.6, the restriction of π to qA is trivial, where q is of
the form q = (u2)n − 1 for some n ∈ N. Conclude that the restriction
of µ to qA is 2ε-close to the trivial representation:

‖1− µ|qA‖ ≤ ‖1− π|qA‖+ 2ε = 2ε

As the same argument applies to the lower triangular matrices, it fol-
lows that µ maps every elementary matrix with entries in qA, that is
every element of e2(qA), 2ε-close to the identity. The next computa-
tion will show that then any conjugate of an element of e2(I) will be
mapped 5ε-close to the identity:

∥∥µ
(
b(qa)′b−1

)
− 1

∥∥ ≤

∥∥∥∥∥∥
µ(b)µ((qa)′)︸ ︷︷ ︸

∼2ε

µ(b−1)− 1

∥∥∥∥∥∥
+ 2ε

≤
∥∥µ(b)µ(b−1)− 1

∥∥+ 4ε

≤5ε



4. DISCUSSION 47

This implies that any element of µ(e⊳2 (qA)) has distance at most 5ε
from the identity. Application of the theorem on bounded generation
III.39 allows to conclude that the subgroup E⊳

2 (A; qA) generated by
the elementary matrices with entries in qA is r(q, A) · 5ε- close to the
identity. r(q, A) denotes in this case the maximal number of elementary
matrices needed to write an element of E⊳

2 (qA) as a product of elements
of e⊳2 (qA).

As the group E⊳

2 (qA) is of finite index in SL2(A) by Lemma IV.2
application of Lemma II.24 proves that µ is 15εr(A, q) + 5ε close to
some representation π′. �

4. Discussion

Two observations are worth mentioning.
The first is that the condition that E⊳

2 (I) is boundedly generated
is a real necessity. A counterexample is provided by the group SL2(Z).
This group contains the free group with two generators as a finite index
subgroup, so according to Corollary II.23 it has finite dimensional non-
trivial ε-representations.

The second interesting fact is that, as mentioned in Chapter II, the
group SL2(A) is no example of a strongly Ulam stable group. This
follows from Lemma II.17, as this group contains a free subgroup with
two generators (but this free group is of course not of finite index).

This means further studies are necessary to identify an example
of a non-amenable strongly Ulam stable group. However, in order to
find such a group, infinite dimensional ε-representations will have to
be considered.
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