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Abstract

Existence and convergence proofs for classical Kannan maps are extended to cases
where the right hand side is enlarged in the condition for the map T :

‖Tx− Ty‖n ≤ αn

2

(
‖Tx− x‖n + ‖Ty − y‖n

)
where n is a positive integer, or α > 1.
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The following considerations have been motivated by observations made at studying,

at first, the invention 1968 [5], and the beginning of investigations of Kannan maps

more from historical (or, perhaps, nostalgical) interest. On this occation, some simple

improvements nearly present themselves which are going into another direction, as it

seems, than the generalizations to be found in the literature concerning. e.g., more

general spaces, or even multivalued maps (see., e.g., [1, 2, 4, 11]).

The classical Kannan map T in Banach space has the property

‖Tx− Ty‖ ≤ α

2

(
‖Tx− x‖+ ‖Ty − y‖

)
(1)

where α ≤ 1. Our intention is (similar as in [3] for generalized contractions) to check

up wether the right hand side may be enlarged: It seems, e.g., rather likely to replace

the arithmetic meam in (1) by the quadratic mean, or to consider parameters α a little

greater that 1. Thus we will generalize (1) as follows

‖Tx− Ty‖n ≤ αn

2

(
‖Tx− x‖n + ‖Ty − y‖n

)
(2)

with any positive integer n and possibly, α > 1, and we ask to what extent classical

existence, and convergence results could be maintained.

First we will point out that in case α = 1, the existence of a fixed point can be

proved, also for n > 1, in the same way as former by P. Soardi [9, 10], S. Reich [8], or

R. Kannan [7].

Then we pass to uniformly convex Banach spaces and prove the convergence of fixed

point iterations in case α = 1 and any n, as well as existence of a fixed point in cases

α > 1. Finally, these results can clearly be improved in Hilbert spaces.
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Remark. For nonnegative a 6= b, the sequence
{

n

√
1
2 (an + bn)

}
is strictly ascending, and

tends to max{a, b}.

For convenience later, we still provide a simple general lemma (similar, e.g., in [12] or

[3]).

Lemma. Let T be a selfmap of a complete metric space
(
M, |·, ·|

)
, with the property

|Tx, Ty|n ≤ αn

2

(
|Tx, x|n + |Ty, y|n

)
, (3)

n being a positive integer, and α ∈ (0, n
√

2). Then T has a fixed point z if infx∈M |Tx, x| =
0, and any sequence {xν}, with lim |Txν , xν | = 0, tends to z. z is unique, T is continuous

at z, and

|Txν , z| ≤
α
n
√

2
|Txν , xν |. (4)

Proof. If inf |Tx, x| = 0, for a strictly descending null sequence {εν}, the sets Mν =

{x ∈M : |Tx, x| ≤ εν} are nonempty, diamT (Mν) ≤ αεν owing to (3), and T (Mν+1) ⊆
T (Mν). Select zν ∈ M : {Tzν} is a Cauchy sequence with limit z, and lim zν = z too.

From

|Tz, z| ≤ |Tz, Tzν |+ |Tzν , z|

≤ α
n
√

2

n

√
|Tz, z|n + |Tzν , zν |n + |Tzν , z|

for ν →∞ we conclude that |Tz, z| cannot be positive, thus Tz = z. (4) is an immediate

consequence of (3), and yields, considering

|Tzν , zν | ≤ |Tzν , z|+ |zν , z|

the continuity of T at z. The uniqueness of z is evident, and the statement of convergence

is supplied by (4) too.

Theorem 1. Let C be a nonempty weakly compact convex subset of a Banach space with

close-to-normal structure, and T : C → C be an n-Kannan map, i.e. for x, y ∈ C, (2) is

valid, with α = 1. Then T has a fixed point.

We will sketch the proof following, essentially, Soardi’s version [10].

Proof. If infx∈C ‖Tx − x‖ = ρ, for a strictly descending sequence {ρν} tending to ρ

the sets Cν =
{
x ∈ C : ‖Tx − x‖ ≤ ρν

}
are nonempty, and Cν+1 ⊆ Cν . Apparently,

‖T 2x − Tx‖ ≤ ‖Tx − x‖, i.e., T (Cν) ⊆ Cν . By virtue of (2), diamT (Cν) ≤ ρnu. The

convex hull

cohT (Cν) =
{
z =

∑
λiTxi : xi ∈ Cν , λi ≥ 0,

∑
λi = 1

}
has diameter ρν too (

∑
stands for a finite sum). The closed convex hull Dν = cohT (Cν)

is contained in Cν : For any y ∈ Dν , and any ε > 0, there is a z ∈ cohT (Cν) with
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‖z − y‖ ≤ ε, and

‖y − Ty‖ ≤ ‖y − z‖+
∥∥∥∑λiTxi − Ty

∥∥∥
≤ ε+

∑
λi‖Txi − Ty‖

≤ ε+
∑

λi
n

√
1

2

(
‖Txi − xi‖n + ‖Ty − y‖n

)
≤ ε+

n

√
1

2

(
ρnν + ‖Ty − y‖n

)
,

independent of the choice of the xi. Therefore ‖Ty − y‖ > ρν is impossible if ε is

sufficiently small, thus y ∈ Cν , Dν ⊆ Cν , and T (Dν) ⊆ T (Cν) ⊆ Dν . D := ∩∞ν+1Dν 6= 0

because of the weak compactness, T (D) ⊆ D, and ‖Ty − y‖ = ρ for all y ∈ D. On the

other hand, diamD ≤ ρ. Now, in any closed convex subset D with positive diameter ρ,

close-to-normal structure claims a z ∈ D such that ‖x − z‖ < ρ for all x ∈ D. But the

last two statements contradict this condition if ρ > 0. Therefore ρ = 0 and D = {z}:
Tz = z.

Incidentally, from a part of this proof we can deduce:

Supplement. If C is a closed convex set of diameter δ in a Banach space which is

minimal with respect to an n-Kannan selfmap T as above, then ‖Tx − x‖ = δ for all

x ∈ C.

Theorem 2. Let C be a nonempty closed convex set in a uniformly convex Banach space,

and T : C → C an n-Kannan map. Then there exists α0 > 1 such that T has a fixed

point if α < α0 in (2).

Proof. For y = Tx in (2) we obtain

‖T 2x− Tx‖n ≤ αn

2− αn
‖Tx− x‖n = βn‖Tx− x‖n. (5)

Since in case α < 1 clearly limν→∞ ‖T ν+1x−T νx‖ = 0 such a fixed point will exist owing

to the lemma, we can assume α ≥ 1 in the following.

For z := 1
2 (Tx+ T 2x), x ∈ C

‖Tz − z‖ ≤ 1

2
‖Tz − Tx‖+

1

2
‖Tz − T 2x‖,

we obtain, by (2) and (5),

‖Tz − T 2x‖ ≤ α n

√
1

2

(
‖Tz − z‖n + ‖T 2x− Tx‖n

)
≤ α n

√
1

2

(
‖Tz − z‖n + βn‖Tx− x‖n

)
(6)

and the same holds, all the more, for ‖Tz − Tx‖. Therefore

‖Tz − z‖n ≤ β2n‖Tx− x‖n, βn =
αn

2− αn
(7)
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Inserting this into the former inequalities (6), we get (note αn = 2βn/(1 + βn))

‖Tz − T 2x‖n ≤ αn

2
(β2n + βn)‖Tx− x‖n = β2n‖Tx− x‖n (8)

which holds also for ‖Tz − Tx‖.
Let, now, infx∈C ‖Tx − x‖ = σ. We have to show σ = 0. Assume, on the contrary,

σ > 0. By uniform convexity, and (6), we have

‖Tz − z‖ =
1

2
‖(Tz − Tx) + (Tz − T 2x)‖

≤ β2‖Tx− x‖
(

1− δ
( σ

β2‖Tx− x‖

))
(9)

where δ(·) is the modulus of convexity. The equation

ϕ(β) := β2
(

1− δ
( 1

β2

))
= 1 (10)

has a unique solution β0 > 1, because the function ϕ is strictly increasing and continuous

in [1,∞), ϕ(1) < 1 and limβ→∞ ϕ(β) =∞.

For β < β0, and ε > 0 such that β2(1 + ε) < β2
0 too, select x ∈ C with ‖Tx − x‖ ≤

(1 + ε)σ. With it, (9) reads

‖Tx− z‖ ≤ β2(1 + ε)σ
(

1− δ
( 1

(1 + ε)β2

))
< σ

which contradicts the meaning of σ, and therefore σ = 0. As

1 < αn0 :=
2βno

1 + βn0
< 2 (11)

for the solution β0 of (10), a fixed point will exist if α < α0 thanks to the lemma.

Remark. In Hilbert space, α0 can be calculated explicitely; for n = 1, e.g., α0 = 1.0278 . . .

(for a better value cf. theorem 4 below).

Some considerations in this proof can be used for a simple convergence proof at least

in the case α = 1, generalizing, e.g., Soardi’s result for n = 1 concerning the fixed point

iteration

zν+1 =
1

2

(
Tzν + T 2zν

)
. (12)

If we set, above, x = zν , and z = zν+1, then (7) states that σν+1 = ‖Tzν+1 − zν+1‖ are

members of a nonascending sequence, and σ = limσν+1 will exist. On the other hand,

(8) yields

‖Tzν+1 − T 2zν‖ ≤ σν , ‖Tzν+1 − Tzν‖ ≤ σν
and considering

lim ‖Tzν+1 − zν+1‖ = lim
1

2
‖(Tzν+1 − Tzν) + (Tzν+1 − T 2zν)‖ = σ

we see that σ > 0 would entail lim ‖Tzν − T 2zν‖ = 0 owing to uniform convexity. But

then (6) reads

‖Tzν+1 − T 2zν‖ ≤
α
n
√

2
‖Tzν+1 − zν+1‖+ εν , εν → 0
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and

σν+1 = ‖Tzν+1 − zν+1‖ ≤
1

2
‖Tzν+1 − Tzν‖+

1

2
‖Tzν+1 − T 2z‖

≤ 1

2
n

√
1

2
(σnν+1 + σnν ) +

1

2

1
n
√

2
σν+1 +

1

2
εν .

For ν →∞, we would obtain

σ ≤ 1

2
σ +

1

2

1
n
√

2
σ =

1

2

(
1 +

1
n
√

2

)
σ

being impossible if σ > 0, and {zν} converges as per lemma, such the result of Soardi

[10] for n = 1 is extended any n:

Theorem 3. Let C, T be as in theorem 2, with α = 1. Then every sequence in C,

governed by rule (12) above converges to the fixed point.

Addendum. In the classical case n = 1, α = 1 even the more plain iteration rule

xν+1 =
1

2
(xν + Txν) (13)

will provide a sequence {xν} converging to the fixed point.

Proof. Assume, without loss of generality, z = Tz = 0. Using (4)

‖Txν‖ ≤
1

2
‖Txν − xν‖ ≤

1

2

(
‖Txν‖+ ‖xν‖

)
,

thus ‖Txν‖ ≤ ‖xν‖, and therefore

‖xν+1‖ ≤
1

2

(
‖xν‖+ ‖Txν‖

)
≤ ‖xν‖.

Let lim ‖xν‖ = ρ. Select a subsequence, designated as {xν} again, with

lim ‖xν‖ = ρ, lim ‖Txν‖ = σ ≤ ρ,

and

lim ‖xν+1‖ = lim
∥∥1

2
(xν + Txν)

∥∥ = ρ.

By uniform convexity, if ρ > 0, we would obtain lim ‖Txν − xν‖ = 0, and with it,

lim ‖Txν‖ = 0, lim ‖xν‖ = 0.

Therefore ρ = 0: (13) is fixed point iteration.

Finally, we will pass to n-Kannan maps in Hilbert space where we will confine ourselves

to the case n = 2 (including n = 1) which maybe earliest of interest; besides, it seems to

be especially fitting here. This becomes evident in the proof of the following assertion:

Proposition. Let C be a nonempty closed subset of a Hilbert space, and T : C → C a

2-Kannan map with α = 1, i.e.

‖Tx− Ty‖2 ≤ 1

2

(
‖Tx− x‖2 + ‖Ty − y‖2

)
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for x, y ∈ C. Then every sequence {xν} formed by the rule (13) will converge to the fixed

point z, and

‖xν+1 − z‖ ≤
1√
2
‖xν − z‖.

Proof. The existence of a fixed point z is given by theorem 2. To simplify matters, we

will assume z = 0. Then for x = xν , y = z = Tz = 0 (or, from(4)) we have

‖Txν‖2 ≤
1

2
‖Txν − xν‖2.

By virtue of the parallelogramm identity we obtain

‖Txν − xν‖2 + ‖Txν + xν‖2 = 2‖xν‖2 + 2‖Txν‖2

≤ 2‖xν‖2 + ‖Txν − xν‖2

and, with it, already the assertion:

‖xν+1‖2 =
∥∥∥1

2
(Txν + xν)

∥∥∥2 ≤ 1

2
‖xν‖2.

After this, we may expect results also in case α > 1.

Theorem 4. Let T : C → C be a selfmap of a nonempty closed convex subset of a

Hilbert space, with the property

‖Tx− Ty‖2 ≤ α2

2

(
‖Tx− x‖2 + ‖Ty − y‖2

)
(14)

for x, y ∈ C. If 1 ≤ α2 < α2
0 := 1

4 (9 −
√

17), every sequence {zν} set up according rule

(12)

zν+1 =
1

2
(Tzν + T 2zν)

will converge to a fixed point z, and at this the displacements tend to zero as

‖Tzν+1 − zν+1‖ ≤
1√
2

α

2− α2
‖Tzν − zν‖. (15)

Accordingly,

‖zν − z‖ ≤
(

1 +
α√
2

)
‖Tzν − zν‖.

Proof. We apply the parallelogram identity to the parallelogramm with vertices Tzν ,

T 2zν , Tzν+1:

‖(Tzν+1 − Tzν) + (Tzν+1 − T 2zν)‖2 + ‖T 2zν − Tzν‖
2

= 2‖Tzν+1 − Tzν‖2 + 2‖Tzν+1 − T 2zν‖
2

≤ α2
(
‖Tzν+1 − zν+1‖2 + ‖Tzν − zν‖2

)
+ α2

(
‖Tzν+1 − zν+1‖2 + ‖T 2zν − Tzν‖

2
)
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by (14), therefore

‖Tzν+1 − zν+1‖2 = ‖Tzν+1 −
1

2
(Tzν + T 2zν)‖

2

=
1

4
‖(Tzν+1 − Tzν) + (Tzν+1 − T 2zν)‖2

≤ α2

2
‖Tzν+1 − zν+1‖2 +

α2

4
‖Tzν − zν‖2 +

1

4
(α2 − 1)‖T 2zν − Tzν‖

2

≤ α2

2
‖Tzν+1 − zν+1‖2 +

1

4

α2

2− α2
‖Tzν − zν‖2,

considering (5), and out of this (15) follows easily. The last inequality in the theorem is

given using (4):

‖zν − z‖ ≤ ‖zν − Tzν‖+ ‖Tzν − Tz‖

≤
(

1 +
α√
2

)
‖Tzν − zν‖.

α2
0 is the solution of 1

2

(
α

2−α2

)2
= 1; clearly α2

0 < 2. According to the lemma, T has a

fixed point.
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